K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ OM ⊥ CD cắt AD tại N

Ta có: MC = MD (đường kính dây cung)

Hay MH + CH = MK + KD     (1)

Ta có: OM // BK (cùng vuông góc với CD)

Hay: MN // BK

Mà: OA = OB (= R)

Suy ra: NA = NK (tính chất đường trung bình của tam giác)

Lại có: OM // AH (cùng vuông góc với CD)

Hay: MN // AH

Mà: NA = NK (chứng minh trên)

Suy ra: MH = MK (tính chất đường trung bình của tam giác)    (2)

Từ (1) và (2) suy ra: CH = DK

16 tháng 12 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ CD.

Vì AH // BK (cùng vuông góc HK) nên tứ giác AHKB là hình thang.

Hình thang AHKB có:

    AO = OB (bán kính).

    OM // AH // BK (cùng vuông góc HK)

=> OM là đường trung bình của hình thang.

=> MH = MK         (1)

Vì OM ⊥ CD nên MC = MD     (2)

Từ (1) và (2) suy ra CH = DK. (đpcm)

5 tháng 1 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ CD.

Vì AH // BK (cùng vuông góc HK) nên tứ giác AHKB là hình thang.

Hình thang AHKB có:

    AO = OB (bán kính).

    OM // AH // BK (cùng vuông góc HK)

=> OM là đường trung bình của hình thang.

=> MH = MK         (1)

Vì OM ⊥ CD nên MC = MD     (2)

Từ (1) và (2) suy ra CH = DK. (đpcm)

23 tháng 6 2017

Đường kính và dây của đường tròn

20 tháng 1 2021

A O B H M K P C

Ta có : \(AH\perp CD\left(gt\right)\)

           \(BK\perp CD\left(gt\right)\)

=> AH // BK

=> Tứ giác ABKH là hình thang có đáy AH và BK

Theo ( gt ) : OA = OB mà \(OM\perp CD\)( theo cách dựng )

=> OM // AC / BK

=> MK = MH (1)

Mặt khác : \(OM\perp CD\Rightarrow MC=MD\left(2\right)\)

Từ (1) và (2) => MH - MC = MK - MD

                     => CH = DK

Vậy CH = DK

25 tháng 4 2017

Vẽ OM⊥CD ta được CM=DM. (1)

Ta có OM // AH //BK (cùng vuông góc với CD).

Mặt khác , OA=OB nên MH=MK. (2)

Từ (1) và (2) suy ra CH=DK.

Nhận xét. Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm C và D cho nhau.

23 tháng 10 2018

VẽOM⊥CDta được CM=DM. (1)

Ta có OM // AH //BK (cùng vuông góc với CD).

Mặt khác , OA=OB nên MH=MK. (2)

Từ (1) và (2) suy ra CH=DK.

Nhận xét. Kết quả của bài toán trên không thay đổi nếu ta đổi chỗ hai điểm C và D cho nhau.

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0