Chứng minh rằng 100 số hạng đầu nhỏ hơn 1/4
1/5; 1/45; 1/117; 1/221; 1/357;...
Giúp mk với. Mk đang cần gấp nha!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng 100 số hạng đầu tiên của dãy trên là:
\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)
=\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}\)
=\(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1`}{17}+...+\frac{1}{397}-\frac{1}{401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{401}\right)<\frac{1}{4}.\left(1-0\right)=\frac{1}{4}.1=\frac{1}{4}\)
=>ĐPCM
Ta so sánh các số hạng
=> Dãy số từ lớn -> bé
=> \(\frac{1}{3}< \frac{1}{2}\)
Nên tất cả các số phía sau đều bé hơn \(\frac{1}{2}\)
M=(1/5+1/5^2+1/5^3+...+1/5^2023) + 1/5x(1/5+1/5^2+1/5^3+...+1/5^2022) + ... + 1/5^2021x(1/5+1/5^2) + 1/5^2022x1/5
Xét biểu thức N=1/5+1/5^2+1/5^3 + ... + 1/5^k (K>0, k thuộc Z)
=> 5N=1+1/5+1/5^2+1/5^3+...+1/5^(k-1)
=> 4N= 5N - N =1 - 1/5^k
=> 1/5+1/5^2+1/5^3 + ... + 1/5^k = 1/4x(1-1/5^k)
Thay vào biểu thức M, ta có:
M= 1/4x(1-1/5^2023) + 1/5x1/4x(1-1/5^2022) + ... + 1/5^2021x1/4x(1-1/5^2) + 1/5^2022x1/4x(1-1/5)
=> 4M = (1+1/5+1/5^2+...+1/5^2022) - 2023/5^2023
=> 4M = 5/4x(1-1/5^2023)-2023/5^2023 < 5/4
=> M < 5/16 < 1/3
Vậy M < 1/3 [ vượt chỉ tiêu nhé =)) ]
*HÌNH NHƯ *
vì tổng mẫu số của dãy số luôn luôn bé hơn 4 mà \(\frac{1}{x}>\frac{1}{y}\left(y>x\right)\)nên tổng của 100 số hạng đầu của dãy số nhỏ hơn \(\frac{1}{4}\)
Tổng 100 số hạng đầu tiên của dãy là:
\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{n.\left(n+4\right)}\left(n\in N,n\ne0\right)\)
=\(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{n.\left(n+4\right)}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{n}-\frac{1}{n+4}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{n+4}\right)<\frac{1}{4}.\left(1-0\right)=\frac{1}{4}.1=\frac{1}{4}\)
Vậy tổng của 100 số hạng đầu tiên bé hơn 1/4
Ta thấy mẫu của dãy có dạng 1.5; 5.9; 9.13; 13.17; 17.21;... tổng quát là (4n-3)(4n+1). Mẫu thứ 100 bằng 397.401. Tổng của 100 số hạng đầu của dãy bằng:
\(\left(1-\dfrac{1}{401}\right):4=\dfrac{1}{4}-\dfrac{1}{1604}< \dfrac{1}{4}\)
Tổng 100 số hang đầu tiên của dãy là:
1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197
= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401
=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)
=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)
=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4
==> ĐPCM
Tổng 100 số hang đầu tiên của dãy là:
1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197
= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401
=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)
=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)
=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4
==> ĐPCM
nhớ k cho mình nha