Cho tam giác ABC vuông góc tại A. Vé AH vuông góc với BC. Tia phân giác góc HAC cắt BC tại N.
a) Chứng minh : Tam giác BAN là tam giác cân
b) Các tia phân giác của góc BAH và góc BHA cắt nhau tại K ; M là trung điểm của AN
Chứng minh : B; K : M thẳng hàng
a) Ta có : Vì góc BNA là góc ngoài của tam giác NAC nên
\(\widehat{BNA}=\widehat{C}+\widehat{NAC}=\widehat{C}+\frac{1}{2}\widehat{A}\)
Lại có
\(\hept{\begin{cases}\widehat{HAC}+\widehat{BAH}=90^0\\\widehat{HAC}+\widehat{HCA}=90^0\end{cases}\Rightarrow}\widehat{C}=\widehat{BAH}\)
Vậy \(\widehat{BAN}=\frac{1}{2}\widehat{A}+\widehat{C}=\widehat{BNA}\)hay tam giác BAN cân
b) K là giao của hai tia phân giác trong tam giác BAH nên BK cũng là phân giác của góc ABH
Mặt khác BM là đường trung tuyến trong tam giác cân BAN nên BM cũng là phân giác của góc ABN(\(\widehat{ABH}=\widehat{ABN}\))
Mà góc ABH chỉ có duy nhất 1 tia phân giác nên BK và BM trung nhau hay B,K,M thẳng hàng