CMR : Với mọi x ta luôn có 3( x2 - 1/x2 ) < ( x3 - 1/x3 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x
Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x
⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0
⇔[x=tx=1−t⇔[x=tx=1−t
⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m
⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1
Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:
−x2+x+1=−x2+3x−x2+x+1=−x2+3x
⇔x=12⇒y=54⇔x=12⇒y=54
Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1:
y′ = 3 x 2 − 2(m + 4)x – 4
∆ ′ = m + 4 2 + 12
Vì ∆ ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.
Ta có:
VT: \(\left(xy+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)\)
\(=\left(xy\right)^3+1^3+x^3-x^3y^3-1+y^3\)
\(=x^3y^3+1+x^3-x^3y^3-1+y^3\)
\(=\left(x^3y^3-x^3y^3\right)+\left(1-1\right)+\left(x^3+y^3\right)\)
\(=x^3+y^3=VP\left(dpcm\right)\)
Bài 13:
1: \(A=-x^2+4x+3\)
\(=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7\le7\)
Dấu '=' xảy ra khi x=2
2: \(B=-\left(x^2-6x+11\right)\)
\(=-\left(x-3\right)^2-2\le-2\)
Dấu '=' xảy ra khi x=3
\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)
Dễ thấy với \(x=2\) ta có VT > VP.
Bạn xem lại đề.
ez
\(3\left(x^2-\frac{1}{x^2}\right)< 2\left(x^3-\frac{1}{x^3}\right)\)
\(\Leftrightarrow3\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)-2\left(x-\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}+1\right)< 0\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)\left[3\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}+1\right)\right]< 0\)
Do \(x>1\Leftrightarrow x^2>1\Leftrightarrow x^2-1>0\)
\(\Rightarrow x-\frac{1}{x}=\frac{x^2-1}{x}>0\forall x>1\)
\(pt\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}+1\right)< 0\)
\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x^2+2+\frac{1}{x^2}-1\right)< 0\)
\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left[\left(x+\frac{1}{x}\right)^2-1\right]< 0\)
\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x+\frac{1}{x}\right)^2+2< 0\)
Đặt \(x+\frac{1}{x}=a\)( \(a>2\) )
\(pt\Leftrightarrow3a-2a^2+2< 0\)
\(\Leftrightarrow2a^2-3a-2>0\)
\(\Leftrightarrow2\left(a^2-\frac{3}{2}a-1\right)>0\)
\(\Leftrightarrow2\left(a^2-2\cdot a\cdot\frac{3}{4}+\frac{9}{16}-\frac{25}{16}\right)>0\)
\(\Leftrightarrow2\left[\left(a-\frac{3}{4}\right)^2-\frac{25}{16}\right]\)
\(\Leftrightarrow2\left(a-\frac{3}{4}\right)^2-\frac{25}{8}>0\)
\(\Leftrightarrow2\left(a-\frac{3}{4}\right)^2>\frac{25}{8}\)
Ta có \(a>2\Leftrightarrow2\left(a-\frac{3}{4}\right)^2>2\left(2-\frac{3}{4}\right)^2=\frac{25}{8}\)( luôn đúng )
Vậy ta có đpcm.