K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Dễ thấy với \(x=2\) ta có VT > VP.

Bạn xem lại đề.

21 tháng 8 2019

ez

\(3\left(x^2-\frac{1}{x^2}\right)< 2\left(x^3-\frac{1}{x^3}\right)\)

\(\Leftrightarrow3\left(x-\frac{1}{x}\right)\left(x+\frac{1}{x}\right)-2\left(x-\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}+1\right)< 0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)\left[3\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}+1\right)\right]< 0\)

Do \(x>1\Leftrightarrow x^2>1\Leftrightarrow x^2-1>0\)

\(\Rightarrow x-\frac{1}{x}=\frac{x^2-1}{x}>0\forall x>1\)

\(pt\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}+1\right)< 0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x^2+2+\frac{1}{x^2}-1\right)< 0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left[\left(x+\frac{1}{x}\right)^2-1\right]< 0\)

\(\Leftrightarrow3\left(x+\frac{1}{x}\right)-2\left(x+\frac{1}{x}\right)^2+2< 0\)

Đặt \(x+\frac{1}{x}=a\)( \(a>2\) )

\(pt\Leftrightarrow3a-2a^2+2< 0\)

\(\Leftrightarrow2a^2-3a-2>0\)

\(\Leftrightarrow2\left(a^2-\frac{3}{2}a-1\right)>0\)

\(\Leftrightarrow2\left(a^2-2\cdot a\cdot\frac{3}{4}+\frac{9}{16}-\frac{25}{16}\right)>0\)

\(\Leftrightarrow2\left[\left(a-\frac{3}{4}\right)^2-\frac{25}{16}\right]\)

\(\Leftrightarrow2\left(a-\frac{3}{4}\right)^2-\frac{25}{8}>0\)

\(\Leftrightarrow2\left(a-\frac{3}{4}\right)^2>\frac{25}{8}\)

Ta có \(a>2\Leftrightarrow2\left(a-\frac{3}{4}\right)^2>2\left(2-\frac{3}{4}\right)^2=\frac{25}{8}\)( luôn đúng )

Vậy ta có đpcm.

15 tháng 12 2021

Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x

Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x

⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0

⇔[x=tx=1−t⇔[x=tx=1−t

⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m

⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1

Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:

−x2+x+1=−x2+3x−x2+x+1=−x2+3x

⇔x=12⇒y=54⇔x=12⇒y=54

Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1

27 tháng 4 2022

thu gọn rồi chứng minh nó > 0

13 tháng 6 2019

y′ = 3 x 2  − 2(m + 4)x – 4

∆ ′ = m + 4 2  + 12

Vì  ∆ ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

12 tháng 8 2023

Ta có:

VT: \(\left(xy+1\right)\left(x^2y^2-xy+1\right)+\left(x^3-1\right)\left(1-y^3\right)\)

\(=\left(xy\right)^3+1^3+x^3-x^3y^3-1+y^3\)

\(=x^3y^3+1+x^3-x^3y^3-1+y^3\)

\(=\left(x^3y^3-x^3y^3\right)+\left(1-1\right)+\left(x^3+y^3\right)\)

\(=x^3+y^3=VP\left(dpcm\right)\)

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.Cm đa thức không có nghiệm hữu tỉ2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZCmR các hệ số của P(x) chia hết cho 7.3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.Tính P(12)+P(−8)10P(12)+P(−8)104. Tìm đa thức P(x)...
Đọc tiếp

1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))

1
Câu 1. Khai tiển biểu thức x3-8x3 ta được kết quả là:A. (x-2y)3                                                  B. x3-2y3            C. (x-2y)(x2+2xy+4y2)                               D. x3-6x2y + 12xy2-8y3 Câu 2. Kết quả phép tính -x2(3-2x)là:A. 3x2-2x3                     B.2x3-3x2                      C.-3x3+2x2                     D.-4x2 Câu 3. Để  4y2-12y +trở thành một...
Đọc tiếp

Câu 1. Khai tiển biểu thức x3-8x3 ta được kết quả là:

A. (x-2y)3                                                  B. x3-2y3            

C. (x-2y)(x2+2xy+4y2)                               D. x3-6x2y + 12xy2-8y3

 

Câu 2. Kết quả phép tính -x2(3-2x)là:

A. 3x2-2x3                     B.2x3-3x2                      C.-3x3+2x2      

               D.-4x2

 

Câu 3. Để  4y2-12y +Đề thi Giữa kì 1 Toán lớp 8 có đáp án năm 2021 Đề 1trở thành một hằng đảng thức. Giá trị trong ô vuông là:

A. 6                       B. 9                        C. – 9                     D. Một kết quả khác

 

Câu 4. Biểu thức 1012 – 1 có giá trị bằng

A. 100                   B. 1002                  C. 102000              D. Một kết quả khác

 

Câu 5. Giá trị của biểu thức x2+2xy+y2 tại x = - 1 và y = - 3 bằng

A. 16                     B. – 4                     C. 8                        D. Một kết quả khác

 

Câu 6. Biết 4x(x2-25)=0, các số x tìm được là:

A. 0; 4; 5               B. 0; 4                    C. -5; 0; 5              D. Một kết quả khác

 

Câu 7

A. -2x +4 =2(2-x)                                    B. -2x+4 = -2(2-x)

C.  -2x +4= -2(x+2)                                  D. -2x+4= 2(x-2)

 

Câu 8. Thực hiện phép nhân x(x-y)

A.x2-y                    B.x-xy                C.x-x2                D.x2-xy

3
25 tháng 3 2022

đề khó đấy

25 tháng 3 2022

Câu 1 : sửa x^3 - 8y^3 

chọn C 

Câu 2 : B 

* Dạng toán về phép chia đa thức Bài 9.Làm phép chia: a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1) Bài 10: Làm tính chia 1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5) Bài 11: 1. Tìm n để đa thức x4–x3 + 6x2–x + n chia...
Đọc tiếp

* Dạng toán về phép chia đa thức

Bài 9.Làm phép chia:

a. 3x3y2: x2 b. (x5+ 4x3–6x2) : 4x2 c.(x3–8) : (x2+ 2x + 4) d. (3x2–6x): (2 –x) e.(x3+ 2x2–2x –1) : (x2+ 3x + 1)

Bài 10: Làm tính chia

1. (x3–3x2+ x –3) : (x –3) 2. (2x4–5x2+ x3–3 –3x) : (x2–3) 3. (x –y –z)5: (x –y –z)3 4. (x2+ 2x + x2–4) : (x + 2) 5. (2x3+ 5x2–2x + 3) : (2x2–x + 1) 6. (2x3 –5x2+ 6x –15) : (2x –5)

Bài 11:

1. Tìm n để đa thức x4–x3 + 6x2–x + n chia hết cho đa thức x2–x + 5

2. Tìm n để đa thức 3x3+ 10x2–5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2+ n –7 chia hết cho n –2.

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

1. A = x2–6x + 11 2. B = x2–20x + 101 3. C = x2–4xy + 5y2+ 10x –22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

1. A = 4x –x2+ 3 2. B = –x2+ 6x –11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên
2. a(2a –3) –2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2+ 2x + 2 > 0 với mọi x 4. x2–x + 1 > 0 với mọi x 5. –x2+ 4x –5 < 0 với mọi x

các bn lm nhanh nhanh giùm mk,mk đang cần gấp.Thank các bn nhìu

1

Bài 13:

1: \(A=-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)\)

\(=-\left(x-2\right)^2+7\le7\)

Dấu '=' xảy ra khi x=2

2: \(B=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\)

Dấu '=' xảy ra khi x=3

10 tháng 9 2021

\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)