1)Rút gọn
a) /x-3/+/x-5/ với(3<x<5)
b)/2x+1/-/2x+1/ với x>\(\frac{-1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x}{x-1}+\frac{3}{x+1}-\frac{5x}{x^2-1}\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+x}{\left(x-1\right)\left(x+1\right)}+\frac{3x-3}{\left(x-1\right)\left(x+1\right)}-\frac{5x}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+x+3x-3-5x}{\left(x-1\right)\left(x+1\right)}=\frac{x^2-x-3}{\left(x-1\right)\left(x+1\right)}\)
A= ( 2x-1) - (2x+3)(x-2) - 2(x+2)(x+5)
= (2x-1) - (2x^2 - 4x+3x-6) - (2x-4)(x+5)
= (2x-1) - (2x^2-4x+3x-6) - (2x^2+10x-4x-20)
= 2x-1-2x^2+4x-3x+6-2x^2-10x+4x+20
= -3x-4x^2+25
= -4x^2-3x+25
Với x=-3 ta có:
(-4).(-3)^2-3.(-3)+25
=-36+9+25
=-2
a) với x>=5 => E=3x+1+x-5=4x-4=4(x-1)
b) th1: x<-1 => E=-x-1-x+3=-2x+2=-2(x-1)
th2: \(-1\le x\le3\)=> E=x+1-x+3=4
th3: x>3 =>E= x+1+x-3=2x-2=2(x-1)
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
\(a,=2x^2+3x^2y-2x-2x^2+6x^2y-3x=9x^2y-5x\\ b,=\left(x-1\right)\left(x+2-x-5\right)=-3\left(x-1\right)=3-3x\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(A< \dfrac{3}{5}\Rightarrow\dfrac{3}{5}-A>0\Rightarrow\dfrac{3}{5}-\dfrac{\sqrt{x}-3}{\sqrt{x}-1}>0\)
\(\Rightarrow\dfrac{3\left(\sqrt{x}-1\right)-5\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}>0\Rightarrow\dfrac{12-2\sqrt{x}}{5\left(\sqrt{x}-1\right)}>0\)
\(\Rightarrow\dfrac{2}{5}.\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\Rightarrow\dfrac{6-\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-\sqrt{x}>0\\\sqrt{x}-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}6-\sqrt{x}< 0\\\sqrt{x}-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1< x< 36\\\left\{{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\left(l\right)\end{matrix}\right.\)
\(\Rightarrow1< x< 36\)
\(=>A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
để \(A< \dfrac{3}{5}< =>\dfrac{\sqrt{x}-3}{\sqrt{x}-1}< \dfrac{3}{5}\)
\(< =>\dfrac{5\left(\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{5\left(\sqrt{x}-1\right)}< 0\)
\(< =>\dfrac{2\sqrt{x}-12}{5\left(\sqrt{x}-1\right)}< 0\)
\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}2\sqrt{x}-12>0\\5\left(\sqrt{x}-1\right)< 0\end{matrix}\right.\\\left[{}\begin{matrix}2\sqrt{x}-12< 0\\5\left(\sqrt{x}-1\right)>0\end{matrix}\right.\end{matrix}\right.\)\(=>\left\{{}\begin{matrix}\left[{}\begin{matrix}x>36\\x< 1\end{matrix}\right.\\\left[{}\begin{matrix}x< 36\\x>1\end{matrix}\right.\end{matrix}\right.=>1< x< 36\left(tm\right)\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
mai minh
học bài
này rùi bn
ráng đợi thêm
2 ngày nữa nhé
a vì 3<x<5 suy ra x=4
suy ra |4-3|+|4-5|=1+12
b thay x=vì x>\(\frac{-1}{2}\) suy ra 2x+1 >hoặc bằng 0
suy ra |2x+1|-|2x+1|=0