Cho tam giác ABC
a. chứng minh G là trọng tâm tam giác khi vecto GA+ vec to GB + vesto GC= vecto 0
b, với 1 điểm M bất kì ta có vecto MA+ vecto MB+ vecto MC=3 vecto MG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi M là trung điểm của AB
Xét ΔABC có
G là trọng tâm
M là trung điểm của AB
Do đó: CG=2/3CM
=>CG=2GM
=>\(\overrightarrow{CG}=2\overrightarrow{GM}\)
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\)
\(=2\overrightarrow{GM}+\overrightarrow{GC}\)
\(=\overrightarrow{CG}+\overrightarrow{GC}=\overrightarrow{0}\)
b: \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)
\(=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\)
\(=3\cdot\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=3\cdot\overrightarrow{MG}\)
Xét ΔABC có G là trọng tâm
nên \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\dfrac{1}{3}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{3}\left(\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right)\)
\(=\dfrac{1}{3}\left(3\cdot\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
\(=\dfrac{1}{3}\cdot3\cdot\overrightarrow{MG}=\overrightarrow{MG}\)
mk bận đi ch nên chỉ tạm câu a nha
vẽ 3 đường trung tuyến AD ; BE ; CF
VT =
\(GA+GB+GC\) ( nhớ thêm dấu vec tơ nha )
\(=-\frac{2}{3}AD-\frac{2}{3}BE-\frac{2}{3}CF\)
\(=-\frac{2}{3}\cdot\frac{1}{2}\left(AB+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(BA+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(CA+CB\right)\) ( quy tắc hình bình hành )
\(=-\frac{1}{3}\left(AB+AC\right)-\frac{1}{3}\left(BA+BC\right)-\frac{1}{3}\left(CA+CB\right)\)
\(=-\frac{1}{3}AB-\frac{1}{3}AC-\frac{1}{3}BA-\frac{1}{3}BC-\frac{1}{3}CA-\frac{1}{3}CB\)
\(=0=VP\)
Câu 1: \(\overrightarrow{IA}+\overrightarrow{IB}=0\)
Bởi vì khi đó, IA và IB là hai vecto đối nhau
Suy ra: IA và IB là hai vecto cùng phương
mà IA và IB có điểm chung là I
nên A,I,B thẳng hàng và IA=IB
Suy ra: I là trung điểm của AB
a) Gọi I là trung điểm BC
Lấy D đối xứng với G qua I => I là trung điểm GD
=> Tứ giác BGCD là hình bình hành
\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GD}\\ \Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GA}+\overrightarrow{GD}\\\Rightarrow \overrightarrow{GA}+\overrightarrow{GD}=0\\ \Rightarrow G\text{ là trung điểm }AD\\ \Rightarrow GI=\frac{1}{2}GD=\frac{1}{2}AG\\ \Rightarrow AG=2GI\\ \Rightarrow\frac{1}{2}AG+AG=AG+GI\\ \Rightarrow\frac{3}{2}AG=AI\\ \Rightarrow AG=\frac{2}{3}AI\)
=> G là trọng tâm \(\Delta ABC\)
\(\text{b) }\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\\ =3\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\\ =3\overrightarrow{MG}+0=3\overrightarrow{MG}\)