Help me vs nhen :3
(X+1). (X-1)
(X-2y).(X+2y)
Giúp mình giải vs nha
Chi tiết vs ạ !!!cảm ơn nhiều ạ !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)\left(\dfrac{360}{x}-6\right)=360\)
\(ĐK:x\ne0\)
\(\Leftrightarrow\left(x+2\right)\left(\dfrac{360-6x}{x}\right)=360\)
\(\Leftrightarrow360-6x+\dfrac{720-12x}{x}=360\)
\(\Leftrightarrow360x-6x^2+720-12x=360x\)
\(\Leftrightarrow6x^2+12x-720=0\)
\(\Delta=12^2-4.6.\left(-720\right)\)
\(=17424>0\)
`->` pt có 2 nghiệm
\(\left\{{}\begin{matrix}x_1=\dfrac{-12-\sqrt{17424}}{12}=-12\\x_2=\dfrac{-12+\sqrt{17424}}{12}=10\end{matrix}\right.\) ( tm )
Vậy \(S=\left\{-12;10\right\}\)
`48/[x+4]+48/[x-4]=5` `ĐK: x \ne +-4`
`<=>[48(x-4)+48(x+4)]/[(x-4)(x+4)]=[5(x+4)(x-4)]/[(x-4)(x+4)]`
`=>48x-192+48x+192=5x^2-80`
`<=>5x^2-96x-80=0`
`<=>5x^2-100+4x-80=0`
`<=>5x(x-20)+4(x-20)=0`
`<=>(x-20)(5x+4)=0`
`<=>` $\left[\begin{matrix} x=20\\ x=\dfrac{-4}{5}\end{matrix}\right.$ (t/m)
Vậy `S={-4/5;20}`
ĐK : \(x\ne\pm4\)
\(\Leftrightarrow\cdot\dfrac{48\left(x+4\right)+48\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5\left(x+4\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\)
\(\Leftrightarrow48x+192+48x-192==5x^2-80\)
\(\Leftrightarrow96x=5x^2-80\)
\(\Leftrightarrow5x^2-96x-80=0\)
\(\Leftrightarrow5x^2+4x-100-80=0\)
\(\Leftrightarrow4\left(x-20\right)+5x\left(x-20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-20=0\\5x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-\dfrac{4}{5}\end{matrix}\right.\)
1, \(2x^2+4x=2x\left(x+2\right)\)
2, \(15x^3+5x^2-10x=5x\left(3x^2+x-2\right)=5x\left(x-\dfrac{2}{3}\right)\left(x+1\right)\)
3) \(5x^2\left(x-2y\right)+15x\left(x-2y\right)=\left(5x^2+15x\right)\left(x-2y\right)=5x\left(x+3\right)\left(x-2y\right)\)
4) \(3\left(x-y\right)+5x\left(y-x\right)=\left(x-y\right)\left(3-5x\right)\)
5) \(5x^2-10x=5x\left(x-2\right)\)
6) \(3x-6y=3\left(x-2y\right)\)
7) \(25x^2+5x^3+x^2y=x^2\left(25+5x+y\right)\)
8) \(14x^2y-21xy^2+28x^2y^2=7xy\left(2x-3y+4xy\right)\)
9) \(x\left(y-1\right)-y\left(y-1\right)=\left(x-1\right)\left(y-1\right)\)
10) \(10x\left(x-y\right)-8y\left(y-x\right)=\left(10x+8y\right)\left(x-y\right)=2\left(5x+4y\right)\left(x-y\right)\)
\(1,=2x\left(x+2\right)\\ 2,=5x\left(3x^2+x-2\right)\\ 3,=\left(x-2y\right)\left(5x^2+15x\right)=5x\left(x+3\right)\left(x-2y\right)\\ 4,=\left(x-y\right)\left(3-5x\right)\\ 5,=5x\left(x-2\right)\\ 6,=3\left(x-2y\right)\\ 7,=5x^2\left(5+x+y\right)\\ 8,=7xy\left(2x-3y+4xy\right)\\ 9,=\left(y-1\right)\left(x-y\right)\\ 10,=\left(x-y\right)\left(10x+8y\right)=2\left(5x+4y\right)\left(x-y\right)\)
a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)
\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)
\(=\left(x^2+9x+19\right)^2\)
b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x-y-2\right)^2\)
d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
Có: \(\frac{y-2}{3}=\frac{2y-4}{6}\)
\(\frac{z-3}{4}=\frac{3z-9}{12}\)
Suy ra\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)
\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=1\)
Vậy có \(\frac{x-1}{2};\frac{y-2}{3};\frac{z-3}{4}=1\)Thay vào có x=3; y=5; z=7
=>9x+4y=360 và 36/x-36/y=1/2
=>4y=360-9x và 36/x-36/y=1/2
=>y=90-2,25x và \(\dfrac{36}{x}-\dfrac{36}{90-2,25x}=\dfrac{1}{2}\)
=>\(\dfrac{3240-81x-36x}{x\left(90-2,25x\right)}=\dfrac{1}{2}\)
=>90x-2,25x^2=2(3240-117x)
=>-2,25x^2+90x-6840+234x=0
=>x=118,3 hoặc x=25,7
=>y=-176,175 hoặc y=32,175
a: Ta có: \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=10
\(\left(x+1\right)\left(x-1\right)=x^2-x+x-1=x^2-1\)
\(\left(x-2y\right)\left(x+2y\right)=x^2+2xy-2xy-4y^2=x^2-4y^2\)
\(\left(x+1\right).\left(x-1\right)\)
\(=x^2-x+x-1\)
\(=x^2+\left(-x+x\right)-1\)
\(=x^2-1.\)
\(\left(x-2y\right).\left(x+2y\right)\)
\(=x^2+2xy-2xy-4y^2\)
\(=x^2+\left(2xy-2xy\right)-4y^2\)
\(=x^2-4y^2.\)
Chúc bạn học tốt!