K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2015

\(\frac{16\left(a+b+c\right)}{abc}\ge\frac{16\left(a+b+c\right)}{\left(\frac{a+b+c}{3}\right)^3}=\frac{16.27}{\left(a+b+c\right)^2}\)

Đặt \(\left(\sqrt[3]{a+b+c}\right)^2=t\text{ }\left(t>0\right)\)

\(VT=t+\frac{16.27}{t^3}=\frac{t}{3}+\frac{t}{3}+\frac{t}{3}+\frac{16.27}{t^3}\ge4\sqrt[4]{\left(\frac{t}{3}\right)^3.\frac{16.27}{t^3}}=8\)

Đẳng thức xảy ra khi \(\frac{t}{3}=\frac{16.27}{t^3}\Leftrightarrow t=6.\)

 

 

4 tháng 8 2017

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

cauchy-schwarz: 

\(VT=\frac{c^2}{ac^2+bc^2}+\frac{a^2}{a^2b+a^2c}+\frac{b^2}{b^2c+b^2a}+\frac{\sqrt[3]{a^2b^2c^2}}{2abc}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) 

18 tháng 12 2019

\(VT=\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}+\Sigma\frac{a^2}{a^2\left(b+c\right)}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\Sigma a^2\left(b+c\right)+2abc}=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

5 tháng 8 2017

Khai triển, BĐT cần chứng minh tương đương 

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{2\left(a+b+c\right)}{\sqrt[3]{abc}}\)

Áp dụng AM-GM:

\(\frac{a}{b}+\frac{a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a^2}{bc}}=\frac{3a}{\sqrt[3]{abc}}\)

\(\frac{b}{c}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{b^2}{ac}}=\frac{3b}{\sqrt[3]{abc}}\)

\(\frac{c}{a}+\frac{c}{a}+\frac{a}{b}\ge3\sqrt[3]{\frac{c^2}{ab}}=\frac{3c}{\sqrt[3]{abc}}\)

Cộng theo vế: \(3\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{3\left(a+b+c\right)}{\sqrt[3]{abc}}\)\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)

Còn chứng minh \(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\ge\frac{a+b+c}{\sqrt[3]{abc}}\) hoàn toàn tương tự.Ta thu được đpcm

Dấu = xảy ra khi a=b=c

NV
1 tháng 3 2020

Sử dụng BĐT: \(\left(x+y+z\right)^3\ge27xyz\Rightarrow\left(\frac{x+y+z}{3}\right)^3\ge xyz\)

\(\Rightarrow\left(\frac{1+a+1+b+1+c}{3}\right)^3\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)

Cộng vế với vế:

\(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

Dấu "=" 3 BĐT trên xảy ra khi \(a=b=c\)

Lại có:

\(1+\sqrt[3]{abc}\ge2\sqrt{\sqrt[3]{abc}}\Rightarrow\left(1+\sqrt[3]{abc}\right)^3\ge\left(2\sqrt{\sqrt[3]{abc}}\right)^3=8\sqrt{abc}\)Dấu "=" xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}=\frac{c^2}{c^2(a+b)}+\frac{a^2}{a^2(b+c)}+\frac{b^2}{b^2(c+a)}+\frac{(\sqrt[3]{abc})^2}{2abc}\)

\(\geq \frac{(c+a+b+\sqrt[3]{abc})^2}{c^2(a+b)+a^2(b+c)+b^2(c+a)+2abc}=\frac{(a+b+c+\sqrt[3]{abc})^2}{(a+b)(b+c)(c+a)}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$