Xác định các số hữu tỉ k để đa thức
A =x\(^3\)+y\(^3\)+z\(^3\)+kxyz chia hết cho x+y+z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta sử dụng các công thức hằng đẳng thức đáng nhớ:
\(A=x^3+y^3+z^3+kxyz=(x+y)^3-3xy(x+y)+z^3+kxyz\)
\(=(x+y)^3+z^3-3xy(x+y)+kxyz\)
\(=(x+y+z)^3-3(x+y)z^2-3(x+y)^2z-3xy(x+y)+kxyz\)
\(=(x+y+z)^3-3(x+y)z(z+x+y)-3xy(x+y+z)+(k+3)xyz\)
\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+(k+3)xyz\)
\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(k+3)xyz\)
Vậy để \(A\vdots x+y+z\) thì \((k+3)xyz\vdots x+y+z, \forall x,y,z\)
Điều này xảy ra chỉ khi \(k+3=0\Leftrightarrow k=-3\)
gọi thương khi chia đa thức A cho x + y + z là Q, ta có :
x3 + y3 + z3 + kxyz = ( x + y + z ) . Q
đẳng thức trên đúng với mọi x,y,z nên với x = 1, y = 1, z = -2 ta có :
1 + 1 + ( -2 )3 + k . ( -2 ) = ( 1 + 1 - 2 ) . Q \(\Rightarrow\)-6 - 2k = 0 \(\Rightarrow\)k = -3
với k = -3 ta có : x3 + y3 + z3 - 3xyz chia hết cho x + y + z ( thương là x2 + y2 + z2 - xy - yz - zx )
Vậy ...
gọi thương khi chia đa thức A cho x + y + z là Q ta có
x^3 =y^3+z^3 +kxyzz =(x + y +z) .Q
đẳng thức trên có thể đúng với các chữ như x,y,z nên x = 1y , 1z = -2
nên :
=>k = - 3 ta cs : x^ +y^3 +z^3 - 3xyz chia hết cho x =y +z (thườn là x2 + y2 -xy - z - zx)
Xem lại đề
\(A=x^3+y^3+z^3+kxyz\)
Thực hiện phép chia ta được
\(A=\left(x^3+y^3+z^3+kxyz\right)\div\left(x+y+z\right)\)
\(A=\left(x+y+z\right)\left[x^2+y^2+z^2-xy-xz-yz-yz\left(k+2\right)\right]-yz\left(x+z\right)\left(k+3\right)\)
Để phép chia hết thì: \(yz\left(x+z\right)\left(k+3\right)=0\)
Suy ra: \(k+3=0\)
Suy ra: \(k=3\)
2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3
Ta có: x3+y3+z3+kxyz
=x3+3x2y+3xy2+y3-3x2y-3xy2+kxyz+z3
=(x+y)3+z3-3xy(x+y)+kxyz
=(x+y+z)[(x+y)2+(x+y)z+z2]-3xy(x+y)+kxyz
ta có: (x+y+z)[(x+y]2+(x+y)z+z2] chia hết cho x+y+z.
Để A chia hết cho x+y+z thì -3xy(x+y)+kxyz phải chia hết cho x+y+z
suy ra: k=-3 thì -3xy(x+y)-3xyz=-3xy(x+y+z);
vậy k=-3 thì a chia hết cho x+y+z
Câu hỏi của vuighe123_oribe - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Phạm Thị Quỳnh Tú - Toán lớp 8 - Học toán với OnlineMath
Tham khảo
\(f\left(x,y,z\right)=x^3+y^3+z^3+kxyz\) sẽ chia hết cho \(x+y+z\) khi và chỉ khi \(f\left(-y-z,y,z\right)=0\).
Nghĩa là \(\left(-y-z\right)^3+y^3+z^3+k\left(-y-z\right)yz=0\)
Khai triển: \(-3yz\left(y+z\right)-k\left(y+z\right)yz=0\) hay \(k=3\).