cho x là 1 số nguyên.Tìm giá trị lớn nhất có thể của 2019-(2x+1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A=\frac{1}{2011-x}\) được xác định \(\Leftrightarrow2011-x\ne0\Rightarrow x\ne2011\)
Để \(A=\frac{1}{2011-x}\)đạt GTLN <=> 2011 - x là số nguyên dương nhỏ nhất
=> 2011 - x = 1 => x = 2010
Vậy GTNN của A = \(\frac{1}{2011-2010}=1\) tại x = 2010
Lời giải:
$A=\frac{n^2+2n+1}{n^2+1}=1+\frac{2n}{n^2+1}$
$A=2+\frac{2n}{n^2+1}-1=2-(1-\frac{2n}{n^2+1})=2-\frac{n^2-2n+1}{n^2+1}$
$=2-\frac{(n-1)^2}{n^2+1}$
Vì $(n-1)^2\geq 0; n^2+1>0$ với mọi $n$ nguyên
$\Rightarrow \frac{(n-1)^2}{n^2+1}\geq 0$
$\Rightarrow A=2-\frac{(n-1)^2}{n^2+1}\leq 2$
Vậy GTNN của $A$ là $2$ khi $(n-1)^2=0$, tức là khi $n=1$.
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Câu 3 :
Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2
=> 2x + 3y chia hết cho 2
=> 2x chia hết cho 2
=> 3y chia hết cho 2
Vì ƯC(2;3) = 1
=> 3y chia hết cho 2 => y chia hết cho 2
=> 3y ≤ 14
=> y ≤ 14/3
=> y ≤ 4
=> y = 2 ; y = 4
Với y = 2 => 2x + 3 - 2 = 14=> x = 4
y = 4 => 2x + 3 . 4 = 14 => x = 1
Vậy với x = 2 thì y = 4
x = 4 thì y = 2
Ta có : Q(x) = -(x+1)(x+2019) + 2020
= - (x2+2019x+x+2019) + 2020
= -x2 - 2020x - 2019 +2020
= -x2 - 2020x + 1
= - (x2+2020x + 1020100) + 1020101
= - (x+1010)2+1020101
Vì (x+1010)2 \(\ge\) 0 \(\forall x\) nên - (x+1010)2 \(\le0\forall x\)
=> - (x+1010)2+1020101 \(\le\)1020101 với mọi x
=> Q(x) \(\le\)1020101 với mọi x
Ta thấy Q(x) = 1020101 khi (x+1010)2 = 0 => x+1010 = 0 => x = -1010
Vậy Q(x) đạt GTLN là 1020101 khi x = -1010
Bài này mài kiếm đâu ra z mk hềnh như bài này ta lm oy mk
2018 đúng ko