K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

cậu có saii đề không ạ ? Mình nghĩ là bình phương chứ?

17 tháng 8 2019

thêm bình phương nữa bạn

17 tháng 8 2019

\(\left(n^2+n-1\right)-1⋮24\forall n\in Z\) help me

18 tháng 8 2019

Sửa đề: \(\left(n^2+n-1\right)^2-1\)

\(\Leftrightarrow\left(n^2+n\right)\left(n^2+n-2\right)\)

\(\Leftrightarrow n\left(n+1\right)n^2+2n-n-2\)

\(\Leftrightarrow n\left(n+1\right)n\left(n+2\right)-\left(n+2\right)\)

\(\Leftrightarrow\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮24\)( Tích 4 số tự nhiên liên tiếp)

Chúc bạn học tốt!!

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

3 tháng 1 2019

C/M chia hết cho 3 và 8

3 tháng 1 2019

\(\left(n^2+3n+1\right)-1=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Bn chứng minh biểu thức trên chia hết cho 3 và 2 nhé!

Sau đó lí luận là (3,2) = 1 và 3.23=24 nên biểu thức chia hết cho 24  

P/s:  ( Nếu có sai sót mong thông cảm =))

9 tháng 11 2017

khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự

Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7

.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91

Xong!!!

9 tháng 11 2017

hơi bị khó hiểu

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Đặt \(A=n(n+1)(2n+1)\)

Nếu $n$ chẵn thì $A$ chẵn \(\Rightarrow A\vdots 2\)

Nếu $n$ lẻ thì $n+1$ chẵn, do đó $A$ chẵn \(\Rightarrow A\vdots 2\)

Vậy $A$ luôn chia hết cho $2$ $(I)$

Nếu $n$ chia hết cho $3$ thì $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $1$ thì $2n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$ nên $A$ chia hết cho $3$

Vậy $A$ luôn chia hết cho $3$ $(II)$

Từ $(I),(II)$ kết hợp với $(2,3)=1$ suy ra \(A\vdots (2.3=6)\) (đpcm)

30 tháng 1 2017

Nguyễn Huy TúAkai Haruma

6 tháng 11 2023

Llklkksd