K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì ∆MNP cân tại M

=> MN = MP , MNP = MPN 

=> MNP = \(\frac{180°-NMP}{2}\) 

Vì MQ = MK

=> ∆MQK cân tại M

=> MQ = MK , MKQ = MQK 

=> QKM = \(\frac{180°-QMK}{2}\) 

Mà QMK = NMP ( đối đỉnh) 

=> QKM = MNP 

Mà 2 góc này ở vị trí so le trong 

=> QK//NP 

=> QKPN là hình thang (1)

Ta có : 

QM + MP = QP 

KM + MN = KN 

Mà QM = MK , MN = MP 

=> OP = KN (2)

=> QKPN là hình thang cân 

a: Xét ΔMKH có MK=MH

nên ΔMKH cân tại M

b: Xét ΔKMN và ΔHMP có

MK=MH

\(\widehat{KMN}=\widehat{HMP}\)

MN=MP

Do đó: ΔKMN=ΔHMP

c: Ta có: ΔMKH cân tại M

mà MQ là đường trung tuyến

nên MQ là đường cao

a: Xét ΔMKH có MK=MH

nên ΔMKH cân tại M

b: Xét ΔKMN và ΔHMP có

MK=MH

\(\widehat{KMN}=\widehat{HMP}\)

MN=MP

Do đó: ΔKMN=ΔHMP

c: Ta có: ΔMKH cân tại M

mà MQ là đường trung tuyến

nên MQ là đường cao

8 tháng 9 2018

Các bạn bỏ câu c nhé

8 tháng 9 2018

Bạn kham khảo nha:

Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Math
8 tháng 9 2018

bn vào Link này xem thử nhé :

Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,ABa) Chứng minh rằng tứ giác BCDE là hình thang cânb) Chứng minh rằng tứ giác CNEQ là hình thangc) Tam giác MNP là tam giác đề - Tìm với Google

Hok tốt 

# EllyNguyen #

8 tháng 9 2018

@Elly Nguyễn Link đâu bạn 

15 tháng 2 2017

28 tháng 3 2021

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)

a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)a)Ta có:

△NMP cân tại N⇒ˆNMP=ˆNPMNMP^=NPM^

1800−ˆNMP=1800−ˆNPM⇒ˆNMA=ˆNPB1800−NMP^=1800−NPM^⇒NMA^=NPB^

Xét △NMA và △NPB có:

NM=NP (gt)

ˆNMA=ˆNPB(cmt)NMA^=NPB^(cmt)

MA=PB (gt)

⇒ △NMA = △NPB (cgc)

⇒NA= NB (2 cạnh tương ứng)

⇒△NAB cân tại N

b)Từ △NMA = △NPB (câu a)

ˆNAM=ˆNBPNAM^=NBP^ (2 góc tương ứng) hay ˆHAM=ˆKBPHAM^=KBP^

Xét △HAM vuông tại H và △KBP vuông tại K có:

AM=BP (gt)

ˆHAM=ˆKBPHAM^=KBP^ (cmt)

⇒ △HAM = △KBP (cạnh huyền - góc nhọn)

⇒HM = KP (2 cạnh tương ứng)vv

5 tháng 4 2021

câu a phải làm như này chứ

A. Xét tam giác NMA và tam giác NPB có:

NM=NP ( tam giác NMP cân)

MA=PB (gt) 

Góc M= góc P (tam giác NMP cân )

=> tam giác NMA= tam giác NPB( c.g.c)

=> NA=NB( hai cạnh t.ứng)

=> tam giác NAB cân