K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

Một bài toán "lừa" người ta:

Đặt \(a=x-y,b=y-z,c=z-x\Rightarrow a+b+c=0\).

Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).

Trong trường hợp này thì \(a+b+c=0\) nên suy ra đpcm.

Ta cần chứng minh biểu thức:

\(A = 3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right)\)

chia hết cho:

\(B = \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)

với \(x , y , z\) đôi một khác nhau, và \(n \in \mathbb{Z} , n > 1\).


Bước 1: Phân tích mẫu số B

Ta xét:

\(B = \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)

Sử dụng hằng đẳng thức:

\(a^{3} + b^{3} + c^{3} = 3 a b c \text{khi}\&\text{nbsp}; a + b + c = 0\)

Đặt:

  • \(a = x - y\)
  • \(b = y - z\)
  • \(c = z - x\)

Khi đó:

\(a + b + c = \left(\right. x - y \left.\right) + \left(\right. y - z \left.\right) + \left(\right. z - x \left.\right) = 0 \Rightarrow a^{3} + b^{3} + c^{3} = 3 a b c \Rightarrow B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)

⇒ Kết luận:

\(B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)


Bước 2: Phân tích tử số A

Xét:

\(A = 3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right)\)

Rút 3 ra ngoài:

\(A = 3 \left[\right. x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right) \left]\right.\)

Gọi:

\(A^{'} = x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right)\)

Mục tiêu: Chứng minh \(A^{'}\) chia hết cho \(\left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)


Bước 3: Ý tưởng dùng đối xứng và định lý đa thức

Đặt \(f \left(\right. x , y , z \left.\right) = x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right)\)

Tính đối xứng:

  • Nếu hoán vị các biến, biểu thức \(f \left(\right. x , y , z \left.\right)\) chỉ đổi dấu, không thay giá trị tuyệt đối. Nên \(f \left(\right. x , y , z \left.\right)\) là một đa thức phản đối xứng.

Ta sẽ chứng minh:

\(\left(\right. x - y \left.\right) , \left(\right. y - z \left.\right) , \left(\right. z - x \left.\right) \mid f \left(\right. x , y , z \left.\right)\)

Nếu \(x = y \Rightarrow f \left(\right. x , x , z \left.\right) = x^{n} \left(\right. z - x \left.\right) + x^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. x - x \left.\right) = x^{n} \left(\right. z - x + x - z \left.\right) + 0 = 0\)

\(x - y \mid f \left(\right. x , y , z \left.\right)\)

Tương tự:

  • \(y = z \Rightarrow f \left(\right. x , y , y \left.\right) = 0 \Rightarrow y - z \mid f\)
  • \(z = x \Rightarrow f \left(\right. x , y , x \left.\right) = 0 \Rightarrow z - x \mid f\)

⇒ Vậy: \(\left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right) \mid A^{'}\)

\(3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right) \mid A\)

\(B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)


Kết luận:

\(A \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp}; B\)

hay:

\(3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right) \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp}; \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)

với mọi số nguyên \(n > 1\), và \(x , y , z\) đôi một khác nhau.


Nếu bạn cần chứng minh bằng phương pháp khác (ví dụ: dùng định lý đồng dư, đa thức hoặc kiểm tra cụ thể), mình có thể hỗ trợ tiếp.

27 tháng 2 2018

x^3+y^3 = 2.(z^3+t^3)

<=> x^3+y^3+z^3+t^3 = 3.(z^2+t^3) chia hết cho 3

Xét : x^3-x = x.(x^2-1) = (x-1).x.(x+1) chia hết cho 3 ( vì là tích 3 số nguyên liên tiếp )

Tương tự : y^3-y , z^3-z  và t^3-t đều chia hết cho 3

=> (x^3+y^3+z^3+t^3)-(x+y+z+t) chia hết cho 3

Mà x^3+y^3+z^3+t^3 chia hết cho 3

=> x+y+z+t chia hết cho 3

Tk mk nha

28 tháng 2 2018

cảm ơn bạn nhé

17 tháng 8 2019

Có:(x-y)3+(y-z)3+(z-x)3

= x3-3x2y+3xy2-y3+y3-3y2z+3yz2-z3+z3-3z2x+3zx2-x3

= 3(x2y+xy2-y2z+yz2-z2x+zx2) \(⋮\) 3

\(\Rightarrow\)ĐPCM

1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên...
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên...
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0