K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

\(\frac{x}{4}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{15}\Rightarrow\frac{x}{12}=\frac{2}{x}\Rightarrow x^2=24\Rightarrow x=\pm\sqrt{24}\)

\(TH1:x=\sqrt{24}\Rightarrow y=\frac{\sqrt{24}.5}{4}=\frac{5\sqrt{6}}{2}\)

\(TH2:x=-\sqrt{24}\Rightarrow y=\frac{-\sqrt{24}.5}{4}=\frac{-5\sqrt{6}}{2}\)

17 tháng 8 2019

Ta có: \(\frac{x}{4}=\frac{y}{5}\Rightarrow x=\frac{4y}{5}\)

Thay \(x=\frac{4y}{5}\left(1\right)\)vào \(\frac{2}{x}=\frac{y}{15}\)ta được:

\(2:\frac{4y}{5}=\frac{y}{15}\)

\(\Rightarrow\frac{10}{4y}=\frac{y}{15}\)

\(\Rightarrow4y^2=10.15\)

\(\Rightarrow4y^2=150\)

\(\Rightarrow y^2=\frac{75}{2}\)

\(\Rightarrow y=\pm\frac{5\sqrt{6}}{2}\)

TH1: \(y=\frac{5\sqrt{6}}{2}\)thay vào (1) ta được:

\(x=2\sqrt{6}\)

TH2:  \(y=-\frac{5\sqrt{6}}{2}\)thay vào(1) ta được: 

\(x=-2\sqrt{6}\)

Vậy ...

15 tháng 8 2019

\(\frac{x}{4}=\frac{y}{5}\)

\(\frac{2}{x}=\frac{y}{15}=\frac{y}{5\cdot3}=\frac{x}{4\cdot3}=\frac{x}{12}\)

\(\Leftrightarrow\frac{2}{x}=\frac{x}{12}\Leftrightarrow x=\sqrt{24}\)\(\Rightarrow y=\frac{5\sqrt{6}}{2}\)

15 tháng 8 2019

giải 

Vì \(\frac{x}{4}=\frac{y}{5}\)

\(\Rightarrow x=\frac{4y}{5}\)

Thay \(x=\frac{4y}{5}\)vào \(\frac{2}{x}=\frac{y}{15}\)ta được :

\(2:\frac{4y}{5}=\frac{y}{15}\)

\(\Rightarrow\frac{10}{4y}=\frac{y}{15}\)

\(\Rightarrow\frac{5}{2y}=\frac{y}{15}\)

\(\Rightarrow2y.y=5.15\)

\(\Rightarrow2y^2=75\)

\(\Rightarrow y^2=\frac{75}{2}\)

\(\Rightarrow y=\pm\sqrt{\frac{75}{2}}\)

đề bài sai ak lớp 7 đã học căn đâu hay tại làm sai xem hộ cái

27 tháng 10 2016

Bài 1: Tìm x, y, z

\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\rightarrow x=27\)

\(\frac{y}{12}=3\rightarrow y=36\)

\(\frac{z}{20}=3\rightarrow z=60\)

Vậy x = 27 ; y = 36 ; z = 60

Bài 2 : Tìm x, y:

5x = 2y và x.y = 40

Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)

Cách 1:

\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40

Đặt \(\frac{x}{2}=\frac{y}{5}\) = k

=> x = 2.k ; y = 5.k

x.y = 40 -> 2k = 5k = 40

-> 10 . \(k^2\) = 40

-> \(k^2\) = 4 -> k = 2 hoặc k = -2

k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)

k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)

Cách 2:

\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)

=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4

x = 4 -> 4.y = 40 => y = 10

x = -4 -> (-4).y = 40 => y = -10

Vậy x = 4 hoặc -4

y = 10 hoặc -10

 

 

 

27 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)

\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)

26 tháng 3 2017

a)Mk ko hiểu làm gì có y đâu

b)Ta có:\(\frac{x-4}{y-3}=\frac{4}{3}\)

     \(\Rightarrow3x-12=4y-12\)

       \(\Rightarrow3x-4y=0\)

                  Mà \(x-y=5\Rightarrow x=5+y\)

Do đó:\(3\left(5+y\right)-4y=0\)

              \(\Rightarrow15+3y-4y=0\)

             \(\Rightarrow15-y=0\)

             \(\Rightarrow y=15\)

Do đó:x=20

           

27 tháng 3 2017

a) \(\frac{x}{7}=\frac{9}{7}\Rightarrow x=9\)

b) \(\frac{x-4}{y-3}=\frac{4}{3}\Rightarrow3\left(x-4\right)=4\left(y-3\right)\)

                              \(\Rightarrow3x-12=4y-12\)

                               \(\Rightarrow3x=4y\)

                              \(\Rightarrow3x=3y+y\)

                              \(\Rightarrow3x-3y=y\)

                              \(\Rightarrow3\left(x-y\right)=y\)

                              \(\Rightarrow3.5=y\)

                              \(\Rightarrow y=15\)

                              \(\Rightarrow x-15=5\)

                              \(\Rightarrow x=5+15\)

                              \(\Rightarrow x=20\)

 Vậy \(y=15,x=20\)

16 tháng 7 2018

\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)

Áp dụng t/c DTSBN ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)

Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)

các câu còn lại lm tương tự nhé

16 tháng 7 2018

uhm, tks bn

16 tháng 8 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)

    \(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)

Áp dụng t/c dãy tỉ số bằng nhau ,ta được:

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)

Do đó: x=4

            y=6

           z=9

Vậy......

16 tháng 8 2019

b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)

        \(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)

Vậy 

24 tháng 7 2017

Ta có : \(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\Rightarrow x=\frac{3y}{5}\)

Thay \(x=\frac{3y}{5}\)vào biểu thức ta được : \(\left(\frac{3y}{5}\right)^2-y^2=8\)

\(\Leftrightarrow\frac{9y^2}{25}-y^2=8\Leftrightarrow9y^2-25y^2=8.25\Leftrightarrow-16y^2=200\Leftrightarrow y^2=-\frac{25}{5}\left(\text{vô lý}\right)\)

b) \(\frac{x}{2}=\frac{y}{5}\Leftrightarrow5x=2y\Leftrightarrow x=\frac{2y}{5}\)

Thay \(x=\frac{2y}{5}\)vào biểu thức ; ta có : \(\frac{2y}{5}\cdot y=90\Leftrightarrow2y^2=450\Leftrightarrow y^2=225\Leftrightarrow y=15\)

Với \(y=15\Rightarrow x=\frac{2.15}{5}=6\)

Vậy .....

24 tháng 7 2017

\(\frac{x}{2}=\frac{y}{5}\)và \(xy=90\)

đặt \(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k;y=5k\)

ta có : \(xy=2k\cdot5k=10k^2=90\)

\(\Rightarrow k^2=90:10=9\)

\(\Rightarrow\orbr{\begin{cases}k=3\\k=-3\end{cases}}\)

TH1: \(\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot5=15\end{cases}}\)

TH2: \(\hept{\begin{cases}x=-3\cdot2=-6\\y=-3\cdot5=-15\end{cases}}\)

21 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)

= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5

Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11

\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17

\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23

Vậy x = 11 ; y = 17 ; z = 23

 

21 tháng 11 2016

a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)

Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow x^2=1;y^2=4;z^2=9\)

=> x = 1 hoặc -1

y = 2 hoặc -2

z = 3 hoặc -3