K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)

=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)

Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)

=>-1,5m=3

=>m=-2

b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)

=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)

Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2

=>m=2

c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)

=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)

=>2/b=2

=>b=1

=>\(y=\dfrac{ax+1}{x-2}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)

=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)

=>a=3

 

 

11 tháng 9 2019

Chọn D

NV
19 tháng 8 2021

Đề bài sai, do pt \(x^2+3x+4=0\) vô nghiệm nên đồ thị hàm số không có TCĐ nào với mọi m

NV
7 tháng 8 2021

Do mẫu có bậc 2 còn tử bậc 1 \(\Rightarrow\)hàm không có tiệm cận đứng khi và chỉ khi phương trình \(x^2-2mx+1=0\) vô nghiệm

\(\Leftrightarrow\Delta'=m^2-1< 0\)

\(\Rightarrow-1< m< 1\)

18 tháng 11 2019

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Nên đồ thị hàm số có 1 cận ngang là y= 0

Đồ thị hàm số có ba đường tiệm cận khi đồ thị hàm số có 2 TCĐ

⇒ phương trình x 2 - 2 m x + 4 = 0  có hai nghiệm phân biệt khác -1.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn A

NV
19 tháng 8 2021

\(x-m=0\Rightarrow x=m\)

Để ĐTHS không có TCĐ

\(\Rightarrow2x^2-3x+m=0\) có nghiệm \(x=m\)

\(\Rightarrow2m^2-3m+m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

4 tháng 7 2018

Chọn D

Đồ thị hàm số có đúng hai tiệm cận đứng

  có 2 nghiệm phân biệt khác 1.

8 tháng 4 2018

Đáp án D

Đồ thị hàm số có 2 tiềm cận đứng

⇔ x ≥ − 1 x 2 − m x − 3 m = 0   có 2 nghiệm phân biệt.

⇔ x ≥ − 1 x 2 = m x + 3 ⇔ x ≥ − 1 m = x 2 x + 3 → f x = x 2 x + 3 có 2 nghiệm phân biệt

Xét hàm số f x = x 2 x + 3 trên − 1 ; + ∞ , có:  f ' x = x x + 6 x + 3 2 ; f ' x = 0 ⇔ x = 0

Tính cách giác trị f − 1 = 1 2 ; f 0 = 0  và lim x → + ∞ f x = + ∞

Khi đó, yêu cầu * ⇔ m ∈ 0 ; 1 2 . Vậy m ∈ 0 ; 1 2 là giá trị cần tìm