K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

a) \(\left(2x+3\right)^2=\frac{9}{25}\)

\(\Rightarrow\left(2x+3\right)^2=\left(\frac{3}{5}\right)^2\) hoặc \(\left(2x+3\right)^2=\left(-\frac{3}{5}\right)^2\)

\(\Rightarrow2x+3=\frac{3}{5}\) hoặc \(2x+3=-\frac{3}{5}\)

\(\Rightarrow2x=-\frac{12}{5}\) hoặc \(2x=-\frac{18}{5}\)

\(\Rightarrow x=-\frac{6}{5}\) hoặc \(x=-\frac{9}{5}\)

Vậy.......

b) \(\left(3x-1\right)^3=\frac{1}{27}\)

\(\left(3x-1\right)^3=\left(\frac{1}{3}\right)^3\)

\(\Rightarrow3x-1=\frac{1}{3}\)

\(\Rightarrow3x=\frac{4}{3}\)

\(\Rightarrow x=\frac{4}{9}\)

Vậy.......

15 tháng 8 2019

a) (2x+3)2=\(\frac{9}{25}\)

2x+3=\(\sqrt{\frac{9}{25}}\)=\(\frac{3}{5}\)

2x=\(\frac{-12}{5}\)

x=\(\frac{-6}{5}\)

b) (3x-1)3=\(\frac{-1}{27}\)

3x-1=\(\frac{-1}{3}\)

3x=\(\frac{2}{3}\)

x=\(\frac{2}{9}\)

23 tháng 6 2019

a, \(\left(2x^3+3\right)^2=\frac{9}{121}=\left(\pm\frac{3}{11}\right)^2\)

Nếu \(2x+3=\frac{3}{11}\Rightarrow x=-\frac{15}{11}\)

Nếu \(2x+3=-\frac{3}{11}\Rightarrow x=-\frac{18}{11}\)

b,\(\left(3x-1\right)^3=-\frac{8}{27}=\left(-\frac{2}{3}\right)^3\)

\(\Leftrightarrow3x-1=-\frac{2}{3}\Leftrightarrow x=\frac{1}{9}\)

23 tháng 6 2019

a, (2x+3)^2 = 9/121

=> 2x+3 = \(\sqrt{\frac{9}{121}}\)\(\frac{3}{11}\)

 

=>x= \(\frac{\frac{3}{11}-3}{2}\) = \(-\frac{15}{11}\)

b,(3x-1)\(^3\)\(-\frac{8}{27}\)

=> \(3x-1=\sqrt[3]{-\frac{8}{27}}=-\frac{2}{3}\)

=>\(x=\frac{-\frac{2}{3}+1}{3}=\frac{1}{9}\)

11 tháng 9 2019

a) x = 1; x = - 1 3                 b) x = 2.

c) x = 3; x = -2.                 d) x = -3; x = 0; x = 2.

16 tháng 8 2019

a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)

                 \(\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)

                \(\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)

           \(=>2x+\frac{3}{5}=\frac{3}{5}\)

                                    \(2x=\frac{3}{5}-\frac{3}{5}\)

                                    \(2x=0\)

                                      \(x=0:2\)

                                      \(x=0\)

16 tháng 8 2019

b) \(\left(3x-1\right).\left(-\frac{1}{2x}+5\right)=0\)

=> \(\left(3x-1\right)=0\)hoặc \(\left(-\frac{1}{2x}+5\right)=0\)hoặc \(\left(3x-1\right)\)\(\left(-\frac{1}{2x}+5\right)\)cùng bằng 0.

\(\orbr{\begin{cases}3x-1=0\\-\frac{1}{2x}+5=0\end{cases}}=>\orbr{\begin{cases}3x=1\\-\frac{1}{2x}=-5\end{cases}}=>\orbr{\begin{cases}x\in\varnothing\\2x=\frac{1}{5}\end{cases}}=>x=\frac{1}{5}:2=>x=\frac{1}{10}\)

9) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)

\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)+x^2+2x-3=4+\left(3x-1\right)\left(x+3\right)\)

\(\Leftrightarrow2x^2-2x+5x-5+x^2+2x-3-4-3x^2-10x+x+3=0\)

\(\Leftrightarrow-4x=9\)

hay \(x=-\dfrac{9}{4}\)

10) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)

\(\Leftrightarrow0x=0\)(luôn đúng)

Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}

11) Ta có: \(\dfrac{5+9x}{x^2-16}=\dfrac{2x-1}{x+4}+\dfrac{3x-1}{x-4}\)

\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}+\dfrac{\left(3x-1\right)\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{9x+5}{\left(x-4\right)\left(x+5\right)}\)

Suy ra: \(2x^2-9x+4+3x^2+12x-x-4-9x-5=0\)

\(\Leftrightarrow5x^2-7x=0\)

\(\Leftrightarrow x\left(5x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{7}{5}\end{matrix}\right.\)

12) Ta có: \(\dfrac{2x}{2x-1}+\dfrac{x}{2x+1}=1+\dfrac{4}{\left(2x-1\right)\left(2x+1\right)}\)

\(\Leftrightarrow\dfrac{2x\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}+\dfrac{x\left(2x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{4x^2-1+4}{\left(2x-1\right)\left(2x+1\right)}\)

Suy ra: \(4x^2+2x+2x^2-x-4x^2-3=0\)

\(\Leftrightarrow2x^2+x-3=0\)

\(\Leftrightarrow2x^2+3x-2x-3=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)

20 tháng 12 2023

128 - 3.95 - 2\(x\) = 107

128 -  285 - 2\(x\)   =107

-157 - 2\(x\)           = 107

          2\(x\)          = -107 - 157 

          2\(x\)          = -264

            \(x\)          = -264 : 2

            \(x\)          = -132

20 tháng 12 2023

b, (3\(x\) - 25) - (\(x\) - 9) = 2 - \(x\) 

     3\(x\) - 25  - \(x\) + 9  = 2  - \(x\)

    3\(x\) - \(x\) + \(x\) = 2 + 25 - 9

     3\(x\)           = 18

        \(x\)          = 18 : 3

        \(x\)        = 6

23 tháng 7 2016

bài 1 : a. x^3 +27 -54-x^3 =-27

b. 8x^3 +y^3 -8x^3 +y^3 =2y^3

c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3

d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3

23 tháng 7 2016

 a. (x-1)^2 =5^2

x-1=5

x=6

 

27 tháng 3 2022

`Answer:`

a. \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)

\(\Leftrightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)

\(\Leftrightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=\frac{41}{4}+\frac{3}{4}\\2x=-\frac{41}{4}+\frac{3}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=11\\2x=-\frac{19}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=11:2\\x=-\frac{19}{2}:2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=-\frac{19}{4}\end{cases}}\)

b. \(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)

\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\)

\(\Leftrightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)

\(\Leftrightarrow\left(x+\frac{1}{5}\right)=\left(\frac{3}{5}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{5}=\frac{3}{5}\\x+\frac{1}{5}=-\frac{3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}-\frac{1}{5}\\x=-\frac{3}{5}-\frac{1}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\\x=-\frac{4}{5}\end{cases}}\)

c. \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)

\(\Leftrightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)

\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}-\left(-\frac{24}{27}\right)\)

\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)

\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)

\(\Leftrightarrow3x-\frac{7}{9}=-\frac{2}{3}\)

\(\Leftrightarrow3x=-\frac{2}{3}+\frac{7}{9}\)

\(\Leftrightarrow3x=\frac{1}{9}\)

\(\Leftrightarrow x=\frac{1}{9}:3\)

\(\Leftrightarrow x=\frac{1}{27}\)

2 tháng 6 2017

a) \(\dfrac{2}{3}x-\dfrac{1}{2}=\dfrac{1}{10}\)

\(\dfrac{2}{3}x=\dfrac{1}{10}+\dfrac{1}{2}=\dfrac{3}{5}\)

\(x=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{9}{10}\)

b) \(\dfrac{39}{7}:x=13\)

\(x=\dfrac{\dfrac{39}{7}}{13}=\dfrac{3}{7}\)

c) \(\left(\dfrac{14}{5}x-50\right):\dfrac{2}{3}=51\)

\(\dfrac{14}{5}x-50=51\cdot\dfrac{2}{3}=34\)

\(\dfrac{14}{5}x=34+50=84\)

\(x=\dfrac{84}{\dfrac{14}{5}}=30\)

d) \(\left(x+\dfrac{1}{2}\right)\left(\dfrac{2}{3}-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\\dfrac{2}{3}-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

e) \(\dfrac{2}{3}x-\dfrac{1}{2}x=\dfrac{5}{12}\)

\(\dfrac{1}{6}x=\dfrac{5}{12}\)

\(x=\dfrac{5}{12}:\dfrac{1}{6}=\dfrac{5}{2}\)

g) \(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\dfrac{11}{5}-\dfrac{3}{7}=-2\)

\(\left(x\cdot\dfrac{44}{7}+\dfrac{3}{7}\right)\cdot\dfrac{11}{5}=-2+\dfrac{3}{7}=-\dfrac{11}{7}\)

\(x\cdot\dfrac{44}{7}+\dfrac{3}{7}=-\dfrac{11}{7}:\dfrac{11}{5}=-\dfrac{5}{7}\)

\(\dfrac{44}{7}x=-\dfrac{5}{7}-\dfrac{3}{7}=-\dfrac{8}{7}\)

\(x=-\dfrac{8}{7}:\dfrac{44}{7}=-\dfrac{2}{11}\)

h) \(\dfrac{13}{4}x+\left(-\dfrac{7}{6}\right)x-\dfrac{5}{3}=\dfrac{5}{12}\)

\(\dfrac{25}{12}x-\dfrac{5}{3}=\dfrac{5}{12}\)

\(\dfrac{25}{12}x=\dfrac{5}{12}+\dfrac{5}{3}=\dfrac{25}{12}\)

\(x=1\)

Mỏi tay woa bn làm nốt nha!!

4 tháng 10 2023

loading...  loading...  loading...