K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

a,1+2-3=0

b,2+1-0=3

c,3-1=2

15 tháng 8 2019

a. 1 + 2 - 3 = 0

b. 2 + 1 - 0 = 3

c. 3 - 1 = 2

Học tốt nha

25 tháng 10 2017

3.

Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\)\(a+2b-3c=-20\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)

+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)

+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)

+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)

Vậy ...

25 tháng 10 2017

3.

ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5

\(\dfrac{a}{2}\)=5=>a=2.5=10

\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15

\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20

vậy a=10,b=15,c=20

chúc bạn hok tốt

3 tháng 4 2020

\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)

\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)

\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)

\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)

19 tháng 5 2021

Đặt ab = x, bc = y, ca = z     (x, y, z ≠ 0 thỏa mãn x^3 + y^3 + z^3 = 3xyz)

⇔ (x+y)^3 − 3xy(x + y) + z^3 = 3xyz <=> (x+y)^3 − 3xy(x + y) + z^3 = 3xyz

⇔ (x + y)^3 + z^3 − 3xy(x + y+ z) = 0 ⇔ (x + y)^3 + z^3 − 3xy(x + y + z) = 0

⇔ (x + y + z)[(x + y)^2 − z (x + y) + z^2] − 3xy(x + y + z) = 0 ⇔ (x + y + z)[(x + y)^2 − z(x + y) + z2] − 3xy(x + y + z) = 0

⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0 ⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0

<=> x + y + z = 0   (1)        và           x^2 + y^2 + z^2 − xy − yz − xz = 0   (2)

Với (1): ⇔ ab + bc + ac = 0 ⇔ ab + bc + ac = 0

P = (1 + a/b)(1 + b/c)(1 + c/a) = (a + b)(b + c)(c + a)/abc=(ab + bc + ac)(a + b + c) − abc/abc = 0 − abc/abc = −1

Với (2) ⇔ (x − y)^2 + (y − z)^2 + (z − x)^2/2 = 0

⇔ (x − y)^2 + (y − z)^2 + (z − x)^2 = 0 

Ta thấy (x − y)^2; (y − z)^2; (z − x)^2 ≥ 0 ∀x, y, z nên để tổng của chúng bằng 0 thì:

(x − y)^2 = (y − z)^2 = (z − x)^2 = 0 ⇒ x = y = z

⇔ ab = bc = ac ⇔ a=b=c (do a, b, c ≠ 0)

⇒ A = (1 + 1)(1 + 1)(1 + 1) = 8 

Vậy...........

13 tháng 4 2020

ta có \(\sqrt[3]{3a+1}=\frac{\sqrt[3]{\left(3a+1\right)2.2}}{\sqrt[3]{4}}\le\frac{3a+1+2+2}{3\sqrt[3]{4}}=\frac{3a+5}{3\sqrt[3]{4}}\)

tương tự \(\hept{\begin{cases}\sqrt[3]{3b+1}\le\frac{3b+5}{3\sqrt[3]{4}}\\\sqrt[3]{3c+1}\le\frac{3c+5}{3\sqrt[3]{4}}\end{cases}}\)

\(=>P\le\frac{3\left(a+b+c\right)+15}{3\sqrt[3]{4}}=\frac{6}{\sqrt[3]{4}}=3\sqrt[3]{2}\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2019

Lời giải:

Đặt $ab=x,bc=y, ca=z$. Điều kiện đề bài tương đương với: Cho $x,y,z\neq 0$ thỏa mãn:
\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow (x+y)^3-3xy(x+y)+z^3=3xyz\)

\(\Leftrightarrow (x+y)^3+z^3-3xy(x+y+z)=0\)

\(\Leftrightarrow (x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)=0\)

\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)

\(\Rightarrow \left[\begin{matrix} x+y+z=0(1)\\ x^2+y^2+z^2-xy-yz-xz=0(2)\end{matrix}\right.\)

Với (1):\(\Leftrightarrow ab+bc+ac=0\)

\(A=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(ab+bc+ac)(a+b+c)-abc}{abc}=\frac{0-abc}{abc}=-1\)

Với (2) \(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z$ nên để tổng của chúng bằng $0$ thì:

\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)

\(\Leftrightarrow ab=bc=ac\Leftrightarrow a=b=c\) (do $a,b,c\neq 0$)

\(\Rightarrow A=(1+1)(1+1)(1+1)=8\)

Vậy...........

AH
Akai Haruma
Giáo viên
27 tháng 8 2019

Lời giải:

Đặt $ab=x,bc=y, ca=z$. Điều kiện đề bài tương đương với: Cho $x,y,z\neq 0$ thỏa mãn:
\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow (x+y)^3-3xy(x+y)+z^3=3xyz\)

\(\Leftrightarrow (x+y)^3+z^3-3xy(x+y+z)=0\)

\(\Leftrightarrow (x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)=0\)

\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)

\(\Rightarrow \left[\begin{matrix} x+y+z=0(1)\\ x^2+y^2+z^2-xy-yz-xz=0(2)\end{matrix}\right.\)

Với (1):\(\Leftrightarrow ab+bc+ac=0\)

\(A=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(ab+bc+ac)(a+b+c)-abc}{abc}=\frac{0-abc}{abc}=-1\)

Với (2) \(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z$ nên để tổng của chúng bằng $0$ thì:

\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)

\(\Leftrightarrow ab=bc=ac\Leftrightarrow a=b=c\) (do $a,b,c\neq 0$)

\(\Rightarrow A=(1+1)(1+1)(1+1)=8\)

Vậy...........

21 tháng 5 2022

Ta có BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.3=9\)

\(\Rightarrow a+b+c\ge3\)

Phân tích và áp dụng BĐT AM-GM:

\(\dfrac{1+3a}{1+b^2}=\dfrac{1}{1+b^2}+\dfrac{3a}{1+b^2}=\left(1-\dfrac{b^2}{1+b^2}\right)+\left(3a-\dfrac{3ab^2}{1+b^2}\right)\ge\left(1-\dfrac{b^2}{2b}\right)+\left(3a-\dfrac{3ab^2}{2b}\right)=\left(1-\dfrac{b}{2}\right)+\left(3a-\dfrac{3}{2}ab\right)\)

Tương tự:

\(\dfrac{1+3b}{1+c^2}\ge\left(1-\dfrac{c}{2}\right)+\left(3b-\dfrac{3}{2}bc\right)\)

\(\dfrac{1+3c}{1+a^2}\ge\left(1-\dfrac{a}{2}\right)+\left(3c-\dfrac{3}{2}ca\right)\)

Cộng các vế của các BĐT ta được:

\(P\ge3-\dfrac{1}{2}\left(a+b+c\right)+3\left(a+b+c\right)-\dfrac{3}{2}\left(ab+bc+ca\right)=3+\dfrac{5}{2}\left(a+b+c\right)-\dfrac{3}{2}.3\ge3+\dfrac{5}{2}.3-\dfrac{9}{2}=6\)

\(P=6\Leftrightarrow a=b=c=1\)

Vậy \(P_{min}=6\)

 

17 tháng 7 2023

\(P=\sqrt{\dfrac{3a^2+1}{3b^2+1}}+\sqrt{\dfrac{3b^2+1}{3c^2+1}}+\sqrt{\dfrac{3c^2+1}{3a^2+1}}\) (1) 

hay \(P=\sqrt{3a^2+\dfrac{1}{3b^2}+1}+\sqrt{3b^2+\dfrac{1}{3c^2}+1}+\sqrt{3c^2+\dfrac{1}{3a^2}+1}\) (2)

vậy ?