cho hình chữ nhật ABCD. Một đường thẳng qua A cắt BC và CD lần lượt tại E,F. CM \(\frac{AB^2}{AE^2}+\frac{AD^2}{AF^2}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giở bài 1 sách giáo khoa toán 9 có phần chứng minh.(sách tập 1 )
kẻ đường thẳng vuông góc vs AE tại A , cắt CD tại M .
Xét tam giác MAF VUÔNG tại A , áp dụng hệ thức lượng ta đc . 1/ AD ^2 = 1/ AM^2 + 1/ AF ^2 (1)
Xét tam giác AMD và tam giác AEB có góc B = góc D = 90 độ ; góc MAD = góc BAE ( 2 góc phụ nhau ) ; AD =AB (GT)
Suy ra tam giác AMD = tam giác AEB
suy ra AE = AM (2)
TỪ (1) và(2) suy ra 1/AB^2 = 1/AE^2 + 1/AF^2
Tích giùm mk nha
bạn tự vẽ hình nha
qua A kẻ AI vuông góc với EF cắt BC tại I
áp dụng hệ thức lượng vào tam giác vuông AEI có AB là đường cao \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AI^2}\) (1)
de dang chung minh duoc tam giac vuong ABI= tam giac vuong AFD(cgv-gnk)
\(\Rightarrow AF=AI\)
thay vao 1 ta co \(\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\left(DPCM\right)\)
qua A vẽ đường thẳng vuông góc với AE cắt CD tại G
xét tam giác ABE và tam giác ADG có
góc BAE = góc GAD ( vì cùng phụ với góc DAE )
AB=AD ( vì tứ giác ABCD là hình vuông )
góc ADG = góc ABE = 90 độ
=> tam giác ABE = tam giác ADG (g.c.g)
=> AE=AG => 1/AE^2=1/AG^2 (1)
mặt khác xét tam giác GAF vuông tại A có đường cao AD nên ta có
1/AG^2 + 1/AF^2 = 1/AD^2 (2)
từ (1) và (2) => 1/AD^2 = 1/AE^2 + 1/AF^2 mà AD = AB => 1/AB^2 = 1/AE^2 + 1/AF^2
từ A kẻ đường thắng vuông góc AF cắt BC tại K
ta có góc BAK = góc DAF ( cùng phụ vs góc BAE)
Xét tam giác BKA và tam giác DFA có
góc ADF= góc ABK ( =90 độ )
AB=AD
góc BAK = góc DAF
=> tam giác BKA và DFA là 2 tam giác = nhau
=> AK=AF ( các cạnh tương ứng )
tam giác AEK vuông tại A có đường cao AB
=> \(\frac{1}{AB^2}=\frac{1}{AK^2}+\frac{1}{AE^2}\)( hệ thức lượng trong tam giác vuông )
=>\(\frac{1}{AB^2}=\frac{1}{AF^2}+\frac{1}{AE^2}\)( đpcm)
Em tham khảo nha.
Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OE=OF=\frac{k}{k+1}\Rightarrow EF=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{EF}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)