Tính x + y biết:
\(\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)
Nãy chép sai đề hihi... đề này đúng!! giúp với!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai nhé, từ giả thiết chỉ xác định được \(x+y=0\Rightarrow y=-x\)
\(\Rightarrow A=4x^2-x^2+x^2+15=4x^2+15\) ko rút gọn được
Nguyễn Việt Lâm Giáo viên, bn có thể sửa đề bài cho mk được không ạ??? Cám ơn bn nhiều lắm lắm!!!
Hiển nhiên là cách đầu sai rồi em
Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được
a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{cases}}\)
Dat \(\hept{\begin{cases}xy=P\\x+y=S\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S+P=7\\S^2+S-P=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+S-\left(7-S\right)=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+2S=24\end{cases}}\)
\(\hept{\begin{cases}S=-6\\P=13\\S=4;P=3\end{cases}}\)
b)
bình phương 2 vế ta đc
\(\left(x+\sqrt{y^2+1}\right)^2\left(y+\sqrt{x^2+1}\right)^2=\)\(1^2\)
\(x^2.\left(\sqrt{y^2}+1\right).y^2\left(\sqrt{x^2}+1\right)=1\)
\(\left(x^2.y^2+1\right).\left(y^2.x^2+1\right)=1\)
\(\Leftrightarrow\left(x^2y^2+1\right)^2=1\)
\(\Leftrightarrow x^4.y^4+1=1\)
\(x^4+y^4=0\)
\(\Rightarrow x=0\)hoặc \(y=0\)