7x - 2/x = 2
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x+1\right)^2=9\left(x-2\right)^2\)
\(\Leftrightarrow9x^2+6x+1=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow9x^2+6x+1=9x^2-36x+36\)
\(\Leftrightarrow9x^2+6x+1-9x^2+36x-36=0\)
\(\Leftrightarrow42x-35=0\)
\(\Leftrightarrow42x=35\)
\(\Leftrightarrow x=\dfrac{35}{42}=\dfrac{5}{6}\)
Vậy: \(S=\left\{\dfrac{5}{6}\right\}\)
Cho \(M\left(x\right)=0\)
hay \(x^2-3x+2=0\)
⇒ \(x^2-2x-x+2=0\)
\(x.x-2x-x+2=0\)
\(x.\left(x-2\right)-\left(x+2\right)=0\)
⇒ \(\left(x-1\right).\left(x-2\right)=0\)
⇒ \(x-1=0\) hoặc \(x-2=0\)
* \(x-1=0\) * \(x-2=0\)
\(x\) \(=0+1\) \(x\) \(=0+2\)
\(x\) \(=1\) \(x\) \(=2\)
Vậy \(x=1\) hoặc \(x=2\) là nghiệm của \(M\left(x\right)\)
\(x^3+3x^2+x+a=x^2\left(x-2\right)+5x\left(x-2\right)+11\left(x-2\right)+22+a=\left(x-2\right)\left(x^2+5x+11\right)+22+a⋮\left(x-2\right)\)
\(\Rightarrow22+a=0\Rightarrow a=-22\)
\(\Leftrightarrow a\cdot\dfrac{13}{15}=\dfrac{28}{13}:2=\dfrac{14}{13}\)
=>\(a=\dfrac{14}{13}:\dfrac{13}{15}=\dfrac{210}{169}\)
Lời giải:
$117=(2y+1)^2-x^2=(2y+1-x)(2y+1+x)$
Vì $x,y$ nguyên nên $2y+1-x, 2y+1+x$ nguyên. Do đó ta có bảng sau:
Ta có: \(x+\left(-\dfrac{31}{12}\right)^2=\left(\dfrac{49}{12}\right)^2-x\)
\(\Leftrightarrow x+x=\dfrac{2401}{144}-\dfrac{961}{144}=10\)
hay x=5
\(\Leftrightarrow y^2=\left(\dfrac{49}{12}\right)^2-5=\dfrac{1681}{144}\)
hay \(y=\dfrac{41}{12}\)
ĐK: x≥2
\(\sqrt{x^2-4}=x-2\)
\(\Leftrightarrow x^2-4=x^2-4x+4\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\left(tm\right)\)
Ta có : \(7x-\frac{2}{x}=2\)
\(\Leftrightarrow\frac{7x^2}{x}-\frac{2}{x}=2\)
\(\Leftrightarrow\frac{7x^2-2}{x}=2\)
\(\Rightarrow7x^2-2x-2=0\)
\(\Leftrightarrow x^2-\frac{2x}{7}-\frac{2}{7}=0\)
\(\Leftrightarrow x^2-2.x.\frac{1}{7}+\frac{1}{49}-\frac{15}{49}=0\)
\(\Leftrightarrow\left(x-\frac{1}{7}\right)^2-\frac{15}{49}=0\)
\(\Leftrightarrow\left(x-\frac{1}{7}-\frac{\sqrt{15}}{7}\right)\left(x-\frac{1}{7}+\frac{\sqrt{15}}{7}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1+\sqrt{15}}{7}\right)\left(x-\frac{1-\sqrt{15}}{7}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1+\sqrt{15}}{7}=0\\x-\frac{1-\sqrt{15}}{7}=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{15}}{7}\\x=\frac{1-\sqrt{15}}{7}\end{cases}}\)