Cho \(\frac{a}{b}\)=\(\frac{c}{d}\), chứng minh rằng:
\(\frac{a}{30a+b}\)=\(\frac{c}{30c+d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có:
\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)
Vậy .....
Bài 2
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)
Vậy .....
Chúc bạn học tốt!
Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=> \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a}{b}=\frac{c}{d}\) nếu khố hiểu thì bạn chứng mình kiểu này :
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Vậy \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Cho a ,b ,c ,d > 0 Chứng minh rằng : \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
Áp dụng BĐT \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\) với a , b > 0 ta có :
\(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a\left(d+a\right)+c\left(b+c\right)}{\left(b+c\right)\left(d+a\right)}=\frac{ad+a^2+bc+c^2}{\left(b+c\right)\left(d+a\right)}\ge\frac{4\left(ad+a^2+bc+c^2\right)}{\left(a+b+c+d\right)^2}\) ( 1 )
\(\frac{b}{c+d}+\frac{d}{a+b}=\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}=\frac{ab+b^2+cd+d^2}{\left(a+b\right)\left(c+d\right)}\ge\frac{4\left(ab+b^2+cd+d^2\right)}{\left(a+b+c+d\right)^2}\) ( 2 )
Từ ( 1 ) và ( 2 ) cộng theo từng vế:
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)
Cần chứng minh rằng \(\frac{\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)
\(\Rightarrow2\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2\)
\(\Rightarrow2ab+2bc+2cd+2ad+2a^2+2b^2+2c^2+2d^2\ge a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2cd+2bd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ac+2bd\)
\(\Rightarrow a^2-2ac+c^2+b^2-2bd+d^2\ge0\)
\(\Rightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\left(đpcm\right)\)
Vậy \(\frac{ab+bc+cd+ad+a^2+b^2+c^2+d^2}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)
\(\Rightarrow\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\ge2\)
Vì \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(ab+bc+cd+ad+a^2+b^2+c^2+d^2\right)}{\left(a+b+c+d\right)^2}\)
Vậy \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
Cho a ,b ,c ,d > 0 Chứng minh rằng : \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge2\)
Áp dụng BĐT bunhiacopxki cho 2 bộ số \(\left(\sqrt{a}.\sqrt{b+c};\sqrt{b}.\sqrt{d+c};\sqrt{c}.\sqrt{d+a};\sqrt{d}.\sqrt{a+b}\right)\)
và \(\left(\frac{\sqrt{a}}{\sqrt{b+c}};\frac{\sqrt{b}}{\sqrt{d+c}};\frac{\sqrt{c}}{\sqrt{d+a}};\frac{\sqrt{d}}{\sqrt{a+b}}\right)\), ta được:
\(\left[a\left(b+c\right)+b\left(d+c\right)+c\left(d+a\right)+d\left(a+b\right)\right]\)\(\left(\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\right)\)\(\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{d+c}+\frac{c}{a+d}+\frac{d}{a+b}\)\(\ge\frac{\left(a+b+c+d\right)^2}{ab+ac+bd+bc+cd+ac+ad+bd}\)(1)
Ta có \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(luôn đúng)
Do đó: \(\left(a+b+c+d\right)^2\ge2\left(ab+ac+bc+bd+cd+ac+ad+bd\right)\)(2)
Từ (1) và (2) suy ra ĐPCM
Dấu "=" xảy ra khi và chỉ khi a=b=c=d
Áp dụng BĐT : \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)với x,y > 0
Ta có : \(\frac{a}{b+c}+\frac{c}{d+a}=\frac{a^2+ad+bc+c^2}{\left(b+c\right)\left(a+d\right)}\ge\frac{4\left(a^2+ad+bc+c^2\right)}{\left(a+b+c+d\right)^2}\)
Tương tự : \(\frac{b}{c+d}+\frac{d}{a+b}\ge\frac{4\left(b^2+ab+cd+d^2\right)}{\left(a+b+c+d\right)^2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\ge\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\)
Cần chứng minh : \(\frac{a^2+b^2+c^2+d^2+ad+bc+ab+cd}{\left(a+b+c+d\right)^2}\ge\frac{1}{2}\)
\(\Leftrightarrow2\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)\ge\left(a+b+c+d\right)^2\)
\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)
Dấu "=" xảy ra khi a = c ; b = d
Vậy ....
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(=\frac{a+b+c+d}{a+b+c+d}=1\).
\(\frac{a}{a+b+c}+\frac{c}{c+d+a}< \frac{a}{a+c}+\frac{c}{c+a}=\frac{a+c}{c+a}=1\)
\(\frac{b}{b+c+d}+\frac{d}{d+a+b}< \frac{b}{b+d}+\frac{d}{d+b}=\frac{b+d}{d+b}=1\)
Suy ra đpcm.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)
Chúc bạn học tốt!
Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(1\right)\)
Lại có: \(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\left(2\right)\)
Từ (1) và (2) => \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\\ \)
Mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a+b+c}{b+c+d}=\frac{a-b+c}{b-c+d}=\frac{a+b-c}{b+c-d}\) . Mà :
\(\frac{a+b+c}{b+c+d}=\frac{a}{d}\)
\(\frac{a+b-c}{b+c-d}=\frac{a}{d}\)
\(\frac{a-b+c}{b-c+d}=\frac{a}{d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}.\frac{a}{d}.\frac{a}{d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\) (đpcm)
Câu trả lời hay nhất: a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
giúp mình với
mình cần gấp
đặt k cho nhanh