Tìm a, b để f(x) = x3 + ax + b chia cho (x + 1) dư 7 và chia cho (x - 3) dư 5?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
Để x 3 + ax + b chia cho x + 1 dư 7 thì b – a – 1 = 7 ó -a + b = 8 (1)
Để x 3 + ax + b chia cho x – 3 dư -5 thì b + 3a + 27 = -5 ó 3a + b = -32 (2)
Từ (1) và (2) ta có hệ - a + b = 8 3 a + b = - 32 ó a = - 10 b = - 2
Vậy a = -10, b = -2
Đáp án cần chọn là: C
Ta có:
f(x) chia x+1 dư 7
=> f(-1) =7
<=> -1-a-b = 7
<=>-a-b=8
f(x) chia x-3 dư -5
=> f(3) = -5
<=> 27+3a+b = -5
<=> 3a+b = -32
=>\(\left\{\begin{matrix}-a-b=8\\3a+b=-32\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}2a=-24\\-a-b=8\end{matrix}\right.\Leftrightarrow}\left\{\begin{matrix}a=-12\\b=4\end{matrix}\right.\)Vậy a=-12; b=4