CÁC SỐ SAU ĐÂY, SỐ NÀO LÀ SỐ CHÍNH PHƯƠNG
A=22....24( 50 SỐ 2)
B=11115556
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 222..4 có tổng các chữ số là 104 chia 3 dư 2 nên k phải là số cp
b.ko vì số chính phương luôn luôn chia cho 3 và 4 có số dư là 2
c, A=1994^4+7 chia 4 dư 3 nên A k phải là số cp
d,B=144..4 = 4.361..11(97 số 1)=> B chính phương <=> 361..1 chính phương mà 361..11 chi 4 dư 3 do đó B k phải là số cp
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
Ư(5)={1;5} => Tổng các ước khác nó: 1
Ư(15)={1;3;5;15} => Tổng các ước khác nó: 1+3+5=9
Ư(28)={1;2;4;7;14;28} => Tổng các ước khác nó: 1+2+4+7+14= 28
Ư(2)={1;2} => Tổng các ước khác nó: 1
Vậy số hoàn chỉnh ở đây là 28 => Chọn C
tong các c/s cua A là: 2.50+4=104 chia 3 dư 2 => A chia 3 dư 2 => A k là scp
\(B=1111.10000+1111.5+1=1111.10005+1=3333.3335+1=\left(3334-1\right)\left(3334+1\right)+1\)
\(=3334^2\)