K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

ĐKXĐ: \(x>1\)

a) \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(P=\frac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(2-3\sqrt{x}\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{15\sqrt{x}-11-3x+6-7\sqrt{x}-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{-5x-2+7\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{-\left(\sqrt{x}-1\right)\left(5\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(P=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

b) \(P=\frac{1}{2}\Leftrightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}=\frac{1}{2}\)

\(\Leftrightarrow2\left(-5\sqrt{x}+2\right)=\sqrt{x}+3\)

\(\Leftrightarrow-10\sqrt{x}+2-\sqrt{x}-3=0\)

\(\Leftrightarrow-11\sqrt{x}-1=0\)

\(\Leftrightarrow\sqrt{x}=\frac{-1}{11}\)( vô lý )

Vậy không có giá trị của x thỏa mãn.

c) \(P\le\frac{2}{3}\)

\(\Leftrightarrow\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\le\frac{2}{3}\)

\(\Leftrightarrow3\left(-5\sqrt{x}+2\right)\le2\left(\sqrt{x}+3\right)\)

\(\Leftrightarrow-15\sqrt{x}+6\le2\sqrt{x}+6\)

\(\Leftrightarrow-17\sqrt{x}\le0\) ( luôn đúng )

Ta có đpcm.

26 tháng 4 2020

ý b bạn nhân phá sai chứ ko p nó vô lý đâu

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính giá trị...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.

2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)

3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)

4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.

5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

7 tháng 3 2020

1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\)\(\sqrt{x}-3\rightarrow\sqrt{x-3}\)

Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)

a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)

\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)

b) Để \(M=\frac{3}{4}\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)

\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)

\(\Leftrightarrow\sqrt{x}-1=0\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)(tm)

Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)

c) Khi x = 4

\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)

\(\Leftrightarrow M=\frac{2+2}{2+3}\)

\(\Leftrightarrow M=\frac{4}{5}\)

Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)

7 tháng 3 2020

Cho mik sửa ĐKXĐ: \(x\ne9\)nhé !

20 tháng 7 2016

a)\(ĐKXĐ\Leftrightarrow\begin{cases}\sqrt{x}\ge0\\\sqrt{x}-1\ne0\end{cases}\Leftrightarrow\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(A=\frac{\sqrt{x}\cdot\left(\sqrt{x}+2\right)+1\cdot\left(\sqrt{x}-1\right)-3\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+\sqrt{x}-1-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

b)\(S=A\cdot B\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+3}{\sqrt{x}+1}\)

\(=\frac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2+1}{\sqrt{x}+2}\)

\(=1+\frac{1}{\sqrt{x}+2}\)

Để S đạt GTLN thì \(\frac{1}{\sqrt{x}+2}\)  đạt GTLN 

\(\frac{1}{\sqrt{x}+2}\) đạt GTLN \(\Leftrightarrow\sqrt{x}+2\) đạt GTNN 

GTNN \(\sqrt{x}+2\) là 2 \(\Leftrightarrow x=0\)

Vậy GTLN của S là \(\frac{3}{2}\Leftrightarrow x=0\)

20 tháng 7 2016

ĐKXĐ \(\Leftrightarrow\)\(\sqrt{x}\ge0\) và \(\sqrt{x}-1\ne0\)

\(\Leftrightarrow x\ge0\) và \(x\ne1\)