K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

\(\Leftrightarrow x^2\left(x+5\right)-4\left(x+5\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-5\end{cases}}\)

13 tháng 8 2019

\(x^3+5x^2-4x-20=0\)

\(\Leftrightarrow x^2\left(x+5\right)-4\left(x+5\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)hoặc \(x-2=0\)hoặc \(x+5=0\)

Vậy tập nghiệm là \(S=\left\{\pm2;5\right\}\)

6 tháng 8 2016

x3+5x2-4x-20=0

=>(x3-4x)+(5x2-20)=0

=>x(x2-4)+5(x2-4)=0

=>(x2-22)(x+5)=0

=>(x-2)(x+2)(x+5)=0

=>x=2 hoặc x=-2 hoặc x=-5

6 tháng 8 2016

\(x^3+5x^2-4x-20=0\)

<=> \(x^3+2x^2+3x^2+6x-10x-20=0\)

<=> \(\left(x+2\right)\cdot\left(x^2+3x-10\right)=0\)=> x+2=0 hoặc

\(x^2+3x-10=0\)

<=> x=-2 hoặc x=-2 hặc x=-5

vậy tâp nghiệm : S={-2,-5,2}

10 tháng 1 2016

minh moi hoc lop 5 thoi

10 tháng 1 2016

1) 3x - 6=  5x + 2

5x - 3x = -6 - 2

2x = -8

x = -4

2) 15 - x = 4x - 5

4x + x = 15 + 5

5x = 20

x = 4

Tương tự như trên 

30 tháng 6 2017

\(\left|5x+13\right|=2x-7\)

khi \(x>\frac{7}{2}\), biểu thức có dạng:

\(\orbr{\begin{cases}5x+13=2x-7\\5x+13=7-2x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x=-20\\7x=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{20}{3}\\x=-\frac{6}{7}\end{cases}}}\)

22 tháng 12 2021

2: x=3

3: x=18

22 tháng 12 2021

1) \(x=51\)

2) \(x=3\)

3) \(x=18\)

4) \(x=2\)

5) \(x=7\)

17 tháng 12 2023

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

17 tháng 12 2023

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

23 tháng 2 2018

a)    \(ĐKXĐ:\)\(x\ne1;\)\(x\ne2;\)\(x\ne3.\)

  \(\frac{6}{x^2-3x+2}+\frac{4}{x^2-4x+3}=\frac{2}{x^2-5x+6}\)

\(\Leftrightarrow\)\(\frac{6}{\left(x-1\right)\left(x-2\right)}+\frac{4}{\left(x-1\right)\left(x-3\right)}=\frac{2}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow\)\(\frac{6\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{4\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)

\(\Rightarrow\)\(6\left(x-3\right)+4\left(x-2\right)=2\left(x-1\right)\)

\(\Leftrightarrow\)\(6x-18+4x-8=2x-2\)

\(\Leftrightarrow\)\(8x=24\)

\(\Leftrightarrow\)\(x=3\)  (ko thỏa mãn ĐKXĐ)

Vậy pt vô nghiệm