Bài 24: Cho tam giác ABC cân ở A có đường cao AH. Từ điểm M trên đoạn thẳng HC kẻ Mx vuông góc vơi HC, tia Mx căt tia phân giác ngoài tại đỉnh A của tam giác ABC ở D.
1) Tính sô đo \(\widehat{HAD}\).
2) Chưng minh: tư giác ADMH là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé :)
a. \(\Delta ABH=\Delta ADH\) (Hai cạnh góc vuông)
b. Ta thấy góc CDE = góc HDA (đối đỉnh) \(\Rightarrow\) góc DEC = góc HAD (Cùng phụ với hai góc bên trên)
Lại do câu a có \(\Delta ABH=\Delta ADH\) nên góc DAH = góc HAB. Mà góc HAB = góc HCA.
Vậy góc ECD = góc DCA
c. Xét tam giác ACM có CH vừa là đường cao, vừa là phân giác nên tam giác ACM cân tại C.
Chúc em học tốt ^^
cô ơi sao góc DEC là góc vuông còn góc HAD là góc nhọn sao bằng nhau được ạ
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A