Tìm x,y
\(\left(x+y\right)^2=\left(x+1\right)\left(y-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
quy đồng H lên rồi rút gọn
sau ko rút gọn xong thì tìm x nguyên khi H=6
Ta có: \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2\left(xy+1\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x+xy-y=x^2+x-xy-y+2xy+2\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x+xy-y=x^2+x+xy-y+2\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x+xy-y-x^2-x-xy+y-2=0\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2x-2=0\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\\left(y+1\right)^2=\left(y-1\right)\left(y-2\right)-2xy\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y^2+2y+1=y^2-3y+2+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y^2+2y+1-y^2+3y-2-2y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\3y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2\left(xy+1\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x^2-x+xy-y=x^2+x-xy-y+2xy+2\\y^2+y-xy-x=y^2-2y+xy-2x-2xy\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2x=2\\x+3y=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-1\\-1+3y=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-1\\3y=1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy hpt trên có nghiệm duy nhất (x;y) = (-1; \(\dfrac{1}{3}\))
Chúc bn học tốt!
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2\left(xy+1\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2-x+xy-y=x^2+x-xy-y+2xy+2\\y^2+y-xy-x=y^2-2y+xy-2x-2xy\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x^2+xy-x-y=x^2+xy+x-y+2\\y^2+y-xy-x=y^2-xy-2y-2x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x=2\\y-x+2y+2x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1\\x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\3y=-x=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|x-2007\right|=\left|x-1\right|+\left|2007-x\right|\ge\left|x-1+2007-x\right|=2006\)Dấu "=" xảy ra khi \(\left(x-1\right)\left(2007-x\right)\ge0\Rightarrow1\le x\le2007\)
Lại có
\(\left\{\begin{matrix}\left|x-30\right|\ge0\\\left|y-4\right|\ge0\\\left|z-1975\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|+\left|x-30\right|+\left|y-4\right|+\left|z-1975\right|+\left|x-2007\right|\ge2006\)Dấu "="xảy ra khi \(\left\{\begin{matrix}\left|x-30\right|=0\\\left|y-4\right|=0\\\left|z-1975\right|=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left\{\begin{matrix}x-30=0\\y-4=0\\z-1975=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}x=30\\y=4\\z=1975\end{matrix}\right.\)
Vậy x=30,y=4,z=1975
a: \(=\dfrac{1}{\left(x-y\right)\left(y-z\right)}-\dfrac{1}{\left(y-z\right)\left(x-z\right)}-\dfrac{1}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\)
b: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(x-y\right)\left(y-z\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(y^2-x^2\right)-z^2\left(y-x\right)-xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{\left(x-y\right)\left[-z\left(x+y\right)+z^2+xy\right]}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{-zx-zy+z^2+xy}{xyz\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{z\left(z-x\right)-y\left(z-x\right)}{xyz\left(y-z\right)\left(x-z\right)}=\dfrac{1}{xyz}\)
d)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+99\right)\left(x+100\right)}\)=\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+.....-\dfrac{1}{x+99}+\dfrac{1}{x+100}\)=\(\dfrac{1}{x}-\dfrac{1}{x+100}\)
=\(\dfrac{x+100}{x\left(x+100\right)}-\dfrac{x}{x\left(x+100\right)}\)
=\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{100}{x\left(x+100\right)}\)
a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
=0
c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{1}{xyz}\)
cách làm nhưng ko chắc
\(\left(x+y\right)^2=\left(x+1\right)\left(y-1\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x+y\right)=\left(x+1\right)\left(y-1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x+y=x+1\\x+y=y-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x=1\\x+y-y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\x=-1\end{cases}}\)
Cảnh báo anh Lê Tài Bảo Châu
Cách đó của anh làm là sai nha !
-_-