K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

1: Xét tứ giác AMND có 

\(\widehat{ADN}=\widehat{DAM}=\widehat{MND}=90^0\)

Do đó: AMND là hình chữ nhật

2: Xét tứ giác AKBD có 

M là trung điểm của đường chéo KD

M là trung điểm của đường chéo AB

Do đó: AKBD là hình bình hành

10 tháng 10 2021

Trả lời:

1: Xét tứ giác AMND có 

ˆADN=ˆDAM=ˆMND=900ADN^=DAM^=MND^=900

Do đó: AMND là hình chữ nhật

2: Xét tứ giác AKBD có 

M là trung điểm của đường chéo KD

M là trung điểm của đường chéo AB

Do đó: AKBD là hình bình hành

Chúc bạn học tốt nhé.

19 tháng 10 2021

a: Xét tứ giác AMND có 

\(\widehat{MAD}=\widehat{ADN}=\widehat{MND}=90^0\)

nên AMND là hình chữ nhật

19 tháng 10 2021

Giải giúp luôn câu b đc ko v 

 

28 tháng 10 2018

sai đề ak làm sao AB > CD đươc

28 tháng 10 2018

nhầm ạ  (AB>AD)

a: Xét tứ giác ADBK có

M là trung điểm chung của AB và DK

=>ADBK là hình bình hành

=>AK=DB

mà DB=AC(ABCD là hình chữ nhật)

nên AK=AC

=>ΔAKC cân tại A

b: Xét ΔIAM có IE là phân giác

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)

mà IA=IK

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)

Xét ΔIMK có IF là phân giác

nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)

=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

nên EF//AK

Ta có: EF//AK

AK//BD(AKBD là hình bình hành)

Do đó: EF//BD

NV
13 tháng 1

a.

Xét tứ giác ADBK có: hai đường chéo AB và DK cắt nhau tại trung điểm M của mỗi đường

\(\Rightarrow ADBK\) là hình bình hành

Do ABCD là hình chữ nhật \(\Rightarrow AB\perp BC\Rightarrow AB\) là đường cao tam giác ACK

Theo cmt, ADBK là hbh \(\Rightarrow BK=AD\)

Mà \(AD=BC\) (ABCD là hcn)

\(\Rightarrow BK=BC\Rightarrow AB\) là trung tuyến tam giác ACK

\(\Rightarrow AB\) vừa là đường cao vừa là trung tuyến nên tam giác ACK cân tại A

b.

Do IE là phân giác, áp dụng định lý phân giác trong tam giác IAM:

\(\dfrac{EM}{EA}=\dfrac{IM}{IA}\) (1)

Do IF là phân giác, áp dụng định lý phân giác trong tam giác IMK:

\(\dfrac{FM}{FK}=\dfrac{IM}{IK}\) (2)

Mà I là trung điểm AK \(\Rightarrow IA=IK\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{EM}{EA}=\dfrac{FM}{FK}\Rightarrow EF||AK\) (định lý Talet đảo)

Theo c/m câu a do ADBK là hình bình hành \(\Rightarrow AK||BD\)

\(\Rightarrow EF||BD\)

NV
13 tháng 1

loading...

6 tháng 1 2019

987456321gianroi

a: Xét tứ giác AMND có 

AM//ND

AM=ND

Do đó: AMND là hình bình hành

b: Hình bình hành AMND có AM=AD

nên AMND là hình thoi

c: Xét tứ giác ANKQ có 

D là trung điểm của NQ

D là trung điểm của AK

Do đó: ANKQ là hình bình hành

18 tháng 12 2021

Các bạn làm giúp mình vs !!!  Mai mình phải nộp ròi

18 tháng 12 2021

ABCDIKEFNM----

a) Vì ABCD là hcn => AB//CD; AB=CD

Mà E,F lần lượt là trung điểm của AB và CF

=> EA=EB=1/2AB;DF=FC=1/2DC và EA//FC

=> EA=FC;EA//FC

Do đó AECF là hbh ( 2 cạnh đối // và = nhau)

b) 

Vì ABCD là hcn => AB//CD; AB=CD

Mà E,F lần lượt là trung điểm của AB và CF

=> EA=EB=1/2AB;DF=FC=1/2DC và EA//DF

=> EA=DF;EA//DF

=> AEFD là hbh (  ( 2 cạnh đối // và = nhau)

Lại có: ^ADF=90o ( ABCD là hcn)

Do đó:  AEFD là hcn. ( hbh có 1 góc vuông) (đpcm)

c) Vì A đối xứng với N qua D (gt)

=> AN là đường trung trực của ^MAF

=> MA=AF (1)

Vì M đối xứng với F qua D

<=>MF là đường trung trực của ^AMN

=>MA=MN (2)

<=> FM là đường trực của ^AFN

=>AF=NF (3)

Từ (1);(2) và (3) => AM=MN=NF=AF

Nên: AMNF là hình thoi (tứ giác có 4 góc vuông ) (đpcm)

d) ngu câu hình cuối nên bỏ đi để làm n'

mình chứng minh DK đg trung tuyến nw o khả quan lắm :)) nên bỏ 

NM
10 tháng 1 2021

A B C D M N O

Xét tứ giác AMND có góc \(A=D=M=90^0\), do đó AMND là hình chữ nhật.

do AMND là hình chữ nhật nên \(AM=ND=NC\) mà AM//NC

do đó AMCN là hình bình hành

do đó AC cắt MN tại trung điểm của mỗi đường, do đó ta có đpcm

8 tháng 11 2023

rồi tại sao am song song với nc

 

10 tháng 12 2016

Vẽ hình ra đi cậu ơi

10 tháng 12 2016

A B C E F D