Tính giá trị của biểu thức:
B=x^5-100x^4+100x^3-100x^2+100x-9 tại x=99
Em cảm ơn trước ạ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 99 suy ra 100 = x +1
A= x^5 - (x + 1)x^4 + (x + 1)x^3 - (x+1)x^2 + (x +1)x - 9
A= x^5 - x^5 - x^4 + x^4 +x^3 - x^3 -x^2 +x^2 + x - 9
A= x - 9 = 99 - 9 = 90
Ta có x = 99
=> x + 1 = 100
Khi đó A = x5 - 100x4 + 100x3 - 100x2 + 100x - 9
= x5 - (x + 1)x4 + (x + 1)x3 - (x + 1)x2 + (x + 1)x - 9
= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 9
= x - 9
Thay x = 99 vào A
=> A = x - 9 = 99 - 9 = 90
Vậy A = 90
Ta có : \(x=99\Rightarrow100=x+1\)
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-9\)
\(=x-9\)hay \(99-9=90\)
Vậy \(A=90\)
a) Vì\(x=99\Rightarrow x+1=100\)
Thay x+1=100 vào biểu thức A ta được :
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)
\(=x+9\)
\(=99+9\)
\(=108\)
b) Tương tự
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)
\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)
\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)
\(\Rightarrow A=0-0+0+01-9=-9\)
x =99 => 100 = x + 1 thay vào ta có
\(x^5-\left(x+1\right)x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right)x-9=x^5-x^5-x^4+...+x^2+x-9\)
= x - 9
= 99 -9
= 90
Ta có:P=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xyP=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy
Đặt S=xy=x(201−x)S=xy=x(201−x)
Dễ có:1≤x≤2001≤x≤200
S=200−(x−1)(x−200)≥0⇒Smin=200S=200−(x−1)(x−200)≥0⇒Smin=200
Không mất tính TQ giả sử x≤y⇒x≤100x≤y⇒x≤100
S=100.101−(x−100)(x−101)≤100.101⇒Smax=100.101
x=99=>x+1=100
A=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-9
A=x5-x5-x4+x4+x3-x3-x2+x2+x-9
A=99-9
A=90
Ta có: x=99
⇒x+1=100
Thay vào biểu thức ta có:
B=\(\text{x}^{\text{5}}\)- (x+1).\(\text{x}^{\text{4}} + ( x+1). \text{x}^{\text{3}} - (x+1). \text{x}^{\text{2}}\)+ (x+1).x - 9
B=\(\text{x}^{\text{5}} - \text{x}^{\text{5}} - \text{x}^{\text{4}} + \text{x}^{\text{4}} + \text{x}^{\text{3}} - \text{x}^{\text{3}} - \text{x}^{\text{2}} + \text{x}^{\text{2}} + x -9\)
B= x-9
vậy giá trị của biểu thức tại x=99 là
B= 99-9=90