K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

\(9x^2+30x+25=\left(3x+5\right)^2\)

17 tháng 9 2017

\(-\left(3x^2-5\right)^2\)

13 tháng 5 2019

\(- ( 3 x2 - 5)2\)

Phân tích xong ròi nhá

MAGICPENCIL 

HÃY LUÔN :-)

26 tháng 8 2023

\(P=\sqrt[]{9x^2-6x+1}+\sqrt[]{25-30x+9x^2}\)

\(\Leftrightarrow P=\sqrt[]{\left(3x-1\right)^2}+\sqrt[]{\left(5-3x\right)^2}\)

\(\Leftrightarrow P=\left|3x-1\right|+\left|5-3x\right|\)

\(\Leftrightarrow P=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)

Vậy \(GTNN\left(P\right)=4\)

26 tháng 8 2023

P = 4

6 tháng 10 2021

\(9x^2-30x+25+6x-10=\left(9x^2-30x+25\right)+\left(6x-10\right)\)

\(=\left(3x-5\right)^2+2\left(3x-5\right)=\left(3x-5\right)\left(3x-5+2\right)=3\left(3x-5\right)\left(x-1\right)\)

6 tháng 10 2021

\(=9x^2-24x+15=9x^2-9x-15x+15\\ =9x\left(x-1\right)-15\left(x-1\right)\\ =3\left(3x-5\right)\left(x-1\right)\)

27 tháng 10 2021

a: \(9x^2-30x+25=0\)

\(\Leftrightarrow3x-5=0\)

hay \(x=\dfrac{5}{3}\)

c: \(9x^2-25=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

27 tháng 10 2021

a) \(9x^2-30x+25=0\Rightarrow\left(3x-5\right)^2=0\Rightarrow x=\dfrac{5}{3}\)

b) \(25x^2-5x+\dfrac{1}{4}=0\Rightarrow\left(10x-1\right)^2=0\Rightarrow x=\dfrac{1}{10}\)

c) \(9x^2-25=0\Rightarrow\left(3x-5\right)\left(3x+5\right)=0\)

    \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

d) \(\left(2x-1\right)^2-\left(3x+2\right)^2=0\)

   \(\Rightarrow\left(2x-1+3x+2\right)\left(2x-1-3x-2\right)=0\)

  \(\Rightarrow-\left(5x+1\right)\left(5x+3\right)=0\)

 \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

27 tháng 8 2015

Ta có \(9x^2-6x+1=\left(3x-1\right)^2,25-30x+9x^2=\left(5-3x\right)^2.\)

Suy ra \(B=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4.\) (Ở đây ta sử dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|,\) với dấu bằng xảy ra khi và chỉ khi \(ab\ge0\)).

Mà khi \(x=\frac{1}{3}\) thì \(B=4.\) Vậy giá trị nhỏ nhất của B là 4.

 

\(B=\left|3x-1\right|+\left|5-3x\right|>=\left|3x-1+5-3x\right|=4\)

Dấu '=' xảy ra khi (3x-1)(3x-5)<=0

=>1/3<=x<=5/3

27 tháng 6 2018

\(\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}\)

=\(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)

=|3x-1|+|5-3x| ≥ |3x-1+5-3x|

<=> |3x-1|+|5-3x| ≥ |4|

=> Min A =4 khi (3x-1)(5-3x) ≥ 0

ta có bảng

x 3x-1 5-3x tích 1/3 5/3 0 0 - + + - - + + - +

=> x ≤ 1/3 hoặc x ≥ 5/3

vậy .....

27 tháng 6 2018

này gọi là xét dấu đúng hong ạ !