K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

\(\text{Xét tam giác ABC ta có A + B + C = 180 và }\frac{A}{7}=\frac{B}{6}=\frac{C}{5}\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có:}\)

\(\frac{A}{7}=\frac{B}{6}=\frac{C}{5}=\frac{A+B+C}{7+6+5}=\frac{180^o}{18}=10^o\)

\(\cdot\frac{A}{7}=10^o\Rightarrow A=70^o\)

\(\cdot\frac{B}{6}=10^o\Rightarrow B=60^o\)

\(\cdot\frac{C}{5}=10^o\Rightarrow C=50^o\)

Vậy \(A=70^o;B=60^o\text{ và }C=50^o\)

Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{A}{7}=\frac{B}{6}=\frac{C}{5}=\frac{A+B+C}{7+6+5}=\frac{180}{18}=10\)

Từ \(\frac{A}{7}=10\Rightarrow A=70^o\)

\(\frac{B}{6}=10\Rightarrow B=60^o\)

\(\frac{C}{5}=10\Rightarrow C=50^o\)

Study well 

18 tháng 8 2015

Mình giúp đưa về tỉ lwj thức thôi nha còn đâu bạn tự làm : 

 \(B=\frac{7}{6}C\Rightarrow6B=7C\Leftrightarrow\frac{B}{7}=\frac{C}{6}\) (1)

\(A=\frac{5}{6}C\Rightarrow6A=5C\Rightarrow\frac{A}{5}=\frac{C}{6}\) (2)

Từ (1) và (2) => \(\frac{A}{5}=\frac{B}{7}=\frac{C}{6}\)

29 tháng 6 2017

Đề sai. Giả sử tam giác là tam giác đều thì ta có:

\(tan\left(30\right)+tan\left(30\right)=\frac{2\sqrt{3}}{3}>\frac{\sqrt{3}}{3}=tan\left(30\right)\)

Nếu nó đều thì bất đẳng thức bị sai là sao dùng bất đẳng thức đó để chứng minh nó đều được.

29 tháng 6 2017

Sửa đề:

\(\hept{\begin{cases}tan\frac{A}{2}+tan\frac{B}{2}\le2tan\frac{C}{2}\left(1\right)\\cot\frac{A}{2}+cot\frac{B}{2}\le2cot\frac{C}{2}\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\frac{1}{tan\frac{A}{2}}+\frac{1}{tan\frac{B}{2}}\le\frac{2}{tan\frac{C}{2}}\le\frac{4}{tan\frac{A}{2}+tan\frac{B}{2}}\)

\(\Leftrightarrow\left(tan\frac{A}{2}+tan\frac{B}{2}\right)^2\le4tan\frac{A}{2}.tan\frac{B}{2}\)

\(\Leftrightarrow\left(tan\frac{A}{2}-tan\frac{B}{2}\right)^2\le0\)

Dấu = xảy ra khi \(tan\frac{A}{2}=tan\frac{B}{2}\)

\(\Rightarrow A=B\)

Thế lại hệ ban đầu ta được

\(\hept{\begin{cases}2tan\frac{A}{2}\le2tan\frac{C}{2}\\2cot\frac{A}{2}\le2cot\frac{C}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}tan\frac{A}{2}\le tan\frac{C}{2}\\tan\frac{A}{2}\ge tan\frac{C}{2}\end{cases}}\)

Dấu = xảy ra khi \(A=C\)

Vậy ta có được \(A=B=C\) nên tam giác ABC là tam giác đều.

11 tháng 1 2021

1.

Áp dụng công thức trung tuyến:

\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)

\(=\dfrac{4a^2+b^2+c^2}{4}\)

\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)

\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)

\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)

17 tháng 9 2016

2) TA CÓ 1/22-1=(1/2-1)x(1/2+1)=-1/2x3/2

1/32-1=(1/3-1)x(1/3+1)=-2/3X4/3..............1/992-1=(1/99-1)(1/99+1)=-98/99x100/99;1/1002-1=(1/100-1)x(1/100+1)=-99/100x101/100

ta có A=-(1/2x2/3x.....98/99x99/100)x(3/2x4/3x......x100/99x101/100)=-1/100x101/2=-101/50<-1/2

17 tháng 9 2016

TA CÓ 1/22-1=(1/2-1)X(1/2+1)=-1/2X3/2 ;1/32-1=(1/3-1)X(1/3+1)=-2/3X4/3.....................

1/992-1=(1/99-1)X(1/99+1)=-98/99X100/99 ;1/1002-1=(1/100-1)X(1/100+1)=99/100X101/100

VẬY A=-(1/2X2/3X.......X98/99X99/100)X(3/2X4/3X....X100/99X101/100)=-101/50<-1/2

16 tháng 9 2016

2) \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9999}{100^2}\)

\(A=-\left(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\right)\) (vì có 99 thừa số âm nên kết quả là âm)

\(A=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3.}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\right)\)

\(A=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)

\(A=-\left(\frac{1}{100}.\frac{101}{2}\right)\)

\(A=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)

16 tháng 9 2016

Trả lời câu nào cũng được nha mấy bạn! Help me, please!!!!!!! khocroikhocroi

15 tháng 11 2021

Giống mình làm

 

7 tháng 10 2020

b) CM: \(\Delta ABH~\Delta CAH\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\)

\(\Rightarrow\frac{5}{6}=\frac{30}{CH}\Rightarrow CH=36cm\)

từ \(\Delta ABH~\Delta CAH\Rightarrow\frac{AH}{HC}=\frac{BH}{AH}\Rightarrow BH.HC=AH^2\)

\(\Rightarrow BH=\frac{AH^2}{CH}=\frac{30^2}{36}=25cm\)

5 tháng 10 2020

Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)với x,y,z dương và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi x=y=z

Với x=y=z thì a=b=c => tam giác ABC đều

26 tháng 10 2020

Cách khác :

Chu vi tam giác bằng 1 suy ra \(a+b+c=1\Rightarrow\hept{\begin{cases}1-a=b+c\\1-b=c+a\\1-c=a+b\end{cases}}\)

Nên đẳng thức viết lại thành: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)\(=\frac{3}{2}\)

Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy, áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel: 

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy tam giác ABC đều.