Cho tam giác ABC thỏa mãn \(\frac{A}{7}=\frac{B}{6}=\frac{C}{5}\). Tính các góc của tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giúp đưa về tỉ lwj thức thôi nha còn đâu bạn tự làm :
\(B=\frac{7}{6}C\Rightarrow6B=7C\Leftrightarrow\frac{B}{7}=\frac{C}{6}\) (1)
\(A=\frac{5}{6}C\Rightarrow6A=5C\Rightarrow\frac{A}{5}=\frac{C}{6}\) (2)
Từ (1) và (2) => \(\frac{A}{5}=\frac{B}{7}=\frac{C}{6}\)
Đề sai. Giả sử tam giác là tam giác đều thì ta có:
\(tan\left(30\right)+tan\left(30\right)=\frac{2\sqrt{3}}{3}>\frac{\sqrt{3}}{3}=tan\left(30\right)\)
Nếu nó đều thì bất đẳng thức bị sai là sao dùng bất đẳng thức đó để chứng minh nó đều được.
Sửa đề:
\(\hept{\begin{cases}tan\frac{A}{2}+tan\frac{B}{2}\le2tan\frac{C}{2}\left(1\right)\\cot\frac{A}{2}+cot\frac{B}{2}\le2cot\frac{C}{2}\left(2\right)\end{cases}}\)
\(\left(2\right)\Leftrightarrow\frac{1}{tan\frac{A}{2}}+\frac{1}{tan\frac{B}{2}}\le\frac{2}{tan\frac{C}{2}}\le\frac{4}{tan\frac{A}{2}+tan\frac{B}{2}}\)
\(\Leftrightarrow\left(tan\frac{A}{2}+tan\frac{B}{2}\right)^2\le4tan\frac{A}{2}.tan\frac{B}{2}\)
\(\Leftrightarrow\left(tan\frac{A}{2}-tan\frac{B}{2}\right)^2\le0\)
Dấu = xảy ra khi \(tan\frac{A}{2}=tan\frac{B}{2}\)
\(\Rightarrow A=B\)
Thế lại hệ ban đầu ta được
\(\hept{\begin{cases}2tan\frac{A}{2}\le2tan\frac{C}{2}\\2cot\frac{A}{2}\le2cot\frac{C}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}tan\frac{A}{2}\le tan\frac{C}{2}\\tan\frac{A}{2}\ge tan\frac{C}{2}\end{cases}}\)
Dấu = xảy ra khi \(A=C\)
Vậy ta có được \(A=B=C\) nên tam giác ABC là tam giác đều.
1.
Áp dụng công thức trung tuyến:
\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)
\(=\dfrac{4a^2+b^2+c^2}{4}\)
\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)
\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)
\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)
2) TA CÓ 1/22-1=(1/2-1)x(1/2+1)=-1/2x3/2
1/32-1=(1/3-1)x(1/3+1)=-2/3X4/3..............1/992-1=(1/99-1)(1/99+1)=-98/99x100/99;1/1002-1=(1/100-1)x(1/100+1)=-99/100x101/100
ta có A=-(1/2x2/3x.....98/99x99/100)x(3/2x4/3x......x100/99x101/100)=-1/100x101/2=-101/50<-1/2
TA CÓ 1/22-1=(1/2-1)X(1/2+1)=-1/2X3/2 ;1/32-1=(1/3-1)X(1/3+1)=-2/3X4/3.....................
1/992-1=(1/99-1)X(1/99+1)=-98/99X100/99 ;1/1002-1=(1/100-1)X(1/100+1)=99/100X101/100
VẬY A=-(1/2X2/3X.......X98/99X99/100)X(3/2X4/3X....X100/99X101/100)=-101/50<-1/2
2) \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-9999}{100^2}\)
\(A=-\left(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\right)\) (vì có 99 thừa số âm nên kết quả là âm)
\(A=-\left(\frac{1.3}{2.2}.\frac{2.4}{3.3.}.\frac{3.5}{4.4}...\frac{99.101}{100.100}\right)\)
\(A=-\left(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...101}{2.3.4...100}\right)\)
\(A=-\left(\frac{1}{100}.\frac{101}{2}\right)\)
\(A=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
Trả lời câu nào cũng được nha mấy bạn! Help me, please!!!!!!!
b) CM: \(\Delta ABH~\Delta CAH\Rightarrow\frac{AB}{AC}=\frac{AH}{CH}\)
\(\Rightarrow\frac{5}{6}=\frac{30}{CH}\Rightarrow CH=36cm\)
từ \(\Delta ABH~\Delta CAH\Rightarrow\frac{AH}{HC}=\frac{BH}{AH}\Rightarrow BH.HC=AH^2\)
\(\Rightarrow BH=\frac{AH^2}{CH}=\frac{30^2}{36}=25cm\)
Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)với x,y,z dương và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)
Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi x=y=z
Với x=y=z thì a=b=c => tam giác ABC đều
Cách khác :
Chu vi tam giác bằng 1 suy ra \(a+b+c=1\Rightarrow\hept{\begin{cases}1-a=b+c\\1-b=c+a\\1-c=a+b\end{cases}}\)
Nên đẳng thức viết lại thành: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)\(=\frac{3}{2}\)
Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Thật vậy, áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy tam giác ABC đều.
\(\text{Xét tam giác ABC ta có A + B + C = 180 và }\frac{A}{7}=\frac{B}{6}=\frac{C}{5}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có:}\)
\(\frac{A}{7}=\frac{B}{6}=\frac{C}{5}=\frac{A+B+C}{7+6+5}=\frac{180^o}{18}=10^o\)
\(\cdot\frac{A}{7}=10^o\Rightarrow A=70^o\)
\(\cdot\frac{B}{6}=10^o\Rightarrow B=60^o\)
\(\cdot\frac{C}{5}=10^o\Rightarrow C=50^o\)
Vậy \(A=70^o;B=60^o\text{ và }C=50^o\)
Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{A}{7}=\frac{B}{6}=\frac{C}{5}=\frac{A+B+C}{7+6+5}=\frac{180}{18}=10\)
Từ \(\frac{A}{7}=10\Rightarrow A=70^o\)
\(\frac{B}{6}=10\Rightarrow B=60^o\)
\(\frac{C}{5}=10\Rightarrow C=50^o\)
Study well