Cho biểu thức \(A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right).\frac{\sqrt{x}+1}{\sqrt{x}}\)
a) Tìm ĐKXĐ
b) Rút gọn A
c) Tìm x nguyên để A nguyên
lát nx mk ik hok rùi, ai giúp vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne-1\\x\ne1\end{cases}}\)
Ta có \(P=\left(1+\frac{\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-1\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)-1\)
\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x-2\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)\(=\frac{x+\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}-1\)
\(=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}-1=\frac{x+\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2}{\sqrt{x}-1}\)
b. Ta có \(P-\sqrt{x}=\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\frac{x+2-x+\sqrt{x}}{\sqrt{x}-1}=\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\frac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)
Để \(P-\sqrt{x}\in Z\Rightarrow\sqrt{x}-1\inƯ\left(3\right)\Rightarrow\sqrt{x}-1\in\left\{-3;-1;1;3\right\}\)
\(\sqrt{x}-1\) | \(-3\) | \(-1\) | \(1\) | \(3\) |
\(\sqrt{x}\) | -2 | 0 | 2 | 4 |
x | 0 | 4 | 16 | |
(l) | (n) | (n) | (n) |
Vậy \(x\in\left\{0;4;16\right\}\)thì \(P-\sqrt{x}\in Z\)
đkxđ là \(x\ne1;x>0\)
\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)
gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
gtnn 3/4
ý c bạn tự làm nha mk chịu
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right).\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x+2}{\sqrt{x}+1}\right):\)\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{x+\sqrt{x}-x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{\sqrt{x}+2}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
Để P âm \(\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}< 0\)
Mà \(\sqrt{x}+2>0\forall x\Rightarrow\sqrt{x}-1< 0\Rightarrow x< 1\)
Để \(P\in Z\Rightarrow\frac{\sqrt{x}-1}{\sqrt{x}+2}\in Z\)
\(\Rightarrow1-\frac{3}{\sqrt{x}+2}\in Z\Rightarrow\frac{3}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ_3\)
Mà \(\sqrt{x}+2\ge2\Rightarrow\sqrt{x}+2=3\Rightarrow x=1\)
Mà để \(P\in Z^-\Rightarrow\hept{\begin{cases}x< 1\\x=1\end{cases}}\)\(\Rightarrow x\in\varnothing\)
Vậy không có giá trị nào của x để P nguyên âm