Chứng tỏ :
1/20+1/21+1/22+...+1/27>8/27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\)
Vậy đpcm
#)Giải :
Câu 1 :
Đặt \(A=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)
\(\Rightarrow A>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)( 8 số hạng )
\(\Rightarrow A>\frac{8}{27}=\frac{8}{27}\)
\(\Rightarrow A>\frac{8}{27}\)
#~Will~be~Pens~#
Câu 1:(trội)
Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\left(đpcm\right)\)
Câu 2:\(D=\frac{2^{25}.3^{15}+3^{15}.5.2^{26}}{2^{25}.3^{17}+3^{15}.2^{25}}=\frac{2^{25}3^{15}\left(1+5.2\right)}{2^{25}3^{15}\left(3^2+1\right)}=\frac{11}{10}\)
\(S=2^0+2^1+2^2+...+2^7\)
\(\Rightarrow S=\left(2^0+2^1\right)+2^2\left(2^0+2^1\right)+...+2^6\left(2^0+2^1\right)\)
\(\Rightarrow S=3+2^2.3+...+2^6.3\)
\(\Rightarrow S=3\left(1+2^2+...+2^6\right)⋮3\)
\(\Rightarrow dpcm\)
Đặt \(B=\frac{1}{20}+\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}< C=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+....+\frac{1}{200}\)
Số các phân số \(\frac{1}{200}\)có trong \(B\)là :
( 200 - 21 ) :1 + 1 = 180 ( phân số )
Nên \(B=\frac{1}{20}+180.\frac{1}{200}=\frac{1}{20}+\frac{9}{10}>\frac{9}{10}\)
Do đó , \(C>B>\frac{9}{10}\)nên \(C>\frac{9}{10}\)
Vậy \(C>\frac{9}{10}\left(ĐPCM\right)\)
\(A=\frac{10}{27}+\frac{9}{16}\frac{11}{34}\)
Ta có: \(\frac{10}{27}< >\backslash\left(\frac{9}{16}< >\backslash\left(\frac{11}{34}< >Nên\backslash\left(A< >b\right)\right)\right)\backslash\left(B=\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}\right)\)
\(B>\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=11.\frac{1}{22}=\frac{1}{2}\)
Nên \(B>\frac{1}{2}\)
\(B=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}\)có 11 số hạng
Ta có: \(\frac{1}{12}>\frac{1}{22}\)
\(\frac{1}{13}>\frac{1}{22}\)
.............
\(\frac{1}{22}=\frac{1}{22}\)
\(\Rightarrow B>\left(\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}\right)=\frac{11}{22}=\frac{1}{2}\)
ta có \(\frac{1}{20}>\frac{1}{27};\frac{1}{21}>\frac{1}{27}...;\frac{1}{26}>\frac{1}{27}\)
=> \(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{7}{27}+\frac{1}{27}=\frac{8}{27}\)(ĐPcm)
Ta có : \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)(8 số hạng)
\(>\frac{1}{27}+\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)(8 số hạng)
\(=\frac{1}{27}\times8\)
\(=\frac{8}{27}\)
\(\Rightarrow\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}>\frac{8}{27}\left(đpcm\right)\)