K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

cảm giác cứ sai sai quái quái thế nào ấy

NV
5 tháng 2 2020

\(\Leftrightarrow2sin5x.sinx+1=2cos4x.sinx+2cos2x.sinx+3sinx\)

\(\Leftrightarrow2sin5x.sinx+1=sin5x-sin3x+sin3x-sinx+3sinx\)

\(\Leftrightarrow2sin5x.sinx-sin5x-2sinx+1=0\)

\(\Leftrightarrow sin5x\left(2sinx-1\right)-\left(2sinx-1\right)=0\)

NV
29 tháng 5 2020

\(sinx\left(1+2cos2x+2cos4x+2cos6x\right)\)

\(=sinx+2sinx.cos2x+2sinx.cos4x+2sinx.cos6x\)

\(=sinx+sin3x+sin\left(-x\right)+sin5x+sin\left(-3x\right)+sin7x+sin\left(-5x\right)\)

\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(=sin7x\)

NV
7 tháng 5 2019

\(A=\frac{cosx-cos3x+cos4x-cos2x}{sinx-sin3x+sin4x-sin2x}=\frac{2sin2x.sinx-2sin3x.sinx}{-2cos2x.sinx+2cos3x.sinx}\)

\(=\frac{sin2x-sin3x}{cos3x-cos2x}=\frac{-2cos\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}{-2sin\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}=cot\left(\frac{5x}{2}\right)\)

\(B=sinx+2cos2x.sinx+2cos4x.sinx+2cos6x.sinx\)

\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)

\(=sin7x\)

19 tháng 12 2018

\(2\cos4x+4\sin2x\cos2x-\sqrt{2}=0\\ < =>2\cos4x+2\sin4x=\sqrt{2}\\ < =>2.\left(\cos4x+\sin4x\right)=\sqrt{2}\\ < =>2\sqrt{2}.\sin\left(4x+\dfrac{\pi}{4}\right)=\sqrt{2}\\ < =>\sin\left(4x+\dfrac{\pi}{4}\right)=\dfrac{1}{2}\\ < =>\left[{}\begin{matrix}4x+\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\4x+\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{-\pi}{48}+k\dfrac{\pi}{2}\\x=\dfrac{7\pi}{48}+k\dfrac{\pi}{2}\end{matrix}\right.\)

19 tháng 12 2018


\(2\cos4x+4\sin2x.\cos2x-\sqrt{2}=0\\ < =>2.\cos4x+2.\sin4x=\sqrt{2}\\ < =>2\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}\\ < =>\sin\left(4x+\dfrac{\pi}{4}\right)=\dfrac{1}{2}\\ < =>\left[{}\dfrac{x+\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi}{x+\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi}}\\ < =>\left[{}\begin{matrix}x=\dfrac{-\pi}{12}+k2\pi\\x=\dfrac{7\pi}{12}+k2\pi\end{matrix}\right.\)

17 tháng 9 2017

Giusp em với

13 tháng 10 2017

10 tháng 10 2018

câu 1

\(\dfrac{cosx}{sinx}\) - \(\dfrac{sinx}{cosx}\) -\(\dfrac{2cos4x}{2sinxcosx}\) =0

\(\dfrac{cos^2x-sin^2x}{sinx.cosx}\) -\(\dfrac{cos4x}{sinx.cosx}\)= 0

\(\dfrac{cos2x-cos4x}{sinx.cosx}\) = 0

\(\left[{}\begin{matrix}cos2x=cos4x\\sin2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4x+k2\pi\\2x=-4x+k2\pi\\2x=k\pi\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-k\pi\\x=\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\) (k∈ Z)

10 tháng 10 2018

câu 2 dùng công thức biến đổi tích thành tổng thành cos 4x + cos 2x sau đó phương trình trở thành sin x - cos 4x=0

NV
5 tháng 10 2021

1.

\(\Leftrightarrow2cos2x+sinx-sin3x=0\)

\(\Leftrightarrow2cos2x-2cos2x.sinx=0\)

\(\Leftrightarrow2cos2x\left(1-sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sinx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{2}+k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
5 tháng 10 2021

2.

\(cos^2x+\left(sin3x-1\right)\left(1-cos\left(\dfrac{\pi}{2}-x\right)\right)=0\)

\(\Leftrightarrow1-sin^2x+\left(sin3x-1\right)\left(1-sinx\right)=0\)

\(\Leftrightarrow\left(1-sinx\right)\left(1+sinx\right)+\left(sin3x-1\right)\left(1-sinx\right)=0\)

\(\Leftrightarrow\left(1-sinx\right)\left(1+sinx+sin3x-1\right)=0\)

\(\Leftrightarrow2\left(1-sinx\right)sin2x.cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sin2x=0\\cosx=0\end{matrix}\right.\)

\(\Leftrightarrow sin2x=0\)

\(\Leftrightarrow x=\dfrac{k\pi}{2}\)