Cho các số thực x, y, z, t thỏa mãn:\(\hept{\begin{cases}5x=3y=\frac{5}{2}z\\\frac{t}{x}-\frac{t}{y}+\frac{t}{z}=\frac{9}{10}\end{cases}}\)
Tính: \(P=\frac{t^2}{xy}+\frac{t^2}{yz}+\frac{t^2}{zx}\)
Giúp hộ mik với ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(y=\frac{5}{3}x;\)\(z=2x\) vào \(\frac{t}{x}-\frac{t}{y}+\frac{t}{z}=\frac{9}{10}\), ta có:
\(t\left(\frac{1}{x}-\frac{3}{5x}+\frac{1}{2x}\right)=\frac{9}{10}\)⇒ \(\frac{9t}{10x}=\frac{9}{10}\Rightarrow t=x\)
Lần lượt thay \(y=\frac{5}{3}x;z=2x;t=x\)vào P, ta có:
\(P=\frac{x^2}{\frac{5}{3}.x^2}+\frac{x^2}{\frac{10}{3}.x^2}+\frac{x^2}{2x^2}=\frac{3}{5}+\frac{3}{10}+\frac{1}{2}=\frac{7}{5}\)
Chứng minh
căn 9 + căn 17 + căn 9 - căn 17 =căn 34
căn 8 + căn 15 + căn 8 - căn 15 =căn 30