VẼ HỘ CÁI HÌNH ( CHỈ CẦN VẼ HÌNH THÔI)
Cho tam giác ABC vuông tại A.,
BD là tia p/giác của góc B ( D thuộc AC)
Vẽ DH vuông BC tại H
DH giao AB tại K
P/S: ko pít vẽ hình
ai tl dc mình tích cho cảm ơn nhìu nhìu nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MAY MINH BI HONG ROI KO VE DUOC co face ko minh gui anh hinh ve cho
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: DA=DH
b: Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADE}=\widehat{HDC}\)
Do đó: ΔADE=ΔHDC
Suy ra: DE=DC
hay ΔDEC cân tại D
Bài làm
~ Mik hỗ trợ làm bài, chú chả bảo anh làm bài này cho :< Giận thật sự :< ~
a) Xét tam giác ABD và tam giác AHD có:
AB = AH ( gt )
^BAD = ^CAD ( Do AD phân giác )
AD chung
=> Tam giác ABD = tam giác AHD ( c.g.c )
=> ^ABD = ^AHB ( hai góc tương ứng )
b) Xét tam giác AHE và tam giác ABC có:
AB = AH ( gt )
^ABC chung
^ABD = ^AHD ( cmt )
=> Tam giác AHE = tam giác ABC ( g.c.g )
c) Vì tam giác ABD = tam giác AHD ( cmt )
=> BD = DH ( hai cạnh tương ứng )
Vì tam giác AHE = tam giác ABC
=> EH = BC ( hai cạnh tương ứng )
Ta có: BD + DC = BC
DH + ED = EH
Mà EH = BC, BD = DH ( cmt )
=> DC = ED (1)
~ Tự chứng minh tiếp, bài khá gắt ~
Cách 1: Giải theo phương pháp bậc tiểu học (của bạn Ác Quỷ)
Ta có
Mà dt(AMN) = 1/4 dt(ABN) = 1/4 . 1/2 dt(ABC) = 1/8 dt(ABC)
dt(DMN) = dt(ABC) - dt(AMN) - dt(BDM) - dt(CDN) = dt(ABC) - 1/8 dt(ABC) - 3/8 dt(ABC) - 1/4 dt(ABC) = 1/4 dt(ABC)
Vậy , suy ra AE/AD = 1/3
Cách 2: Giải theo phương pháp bậc THCS (của bạn Lê Quang Vinh)
DN là đường trung bình của tam giác ABC => DN // AB và DN = 1/2 AB
DN // AB => Hai tam giác EAM và EDN đồng dạng => EA/ED = AM/DN = 1/2 (vì AM = 1/4 AB, DN = 1/2 AB)
=> AE/AD = 1/3
Tick nha Min Cute