chứng tỏ
1 /20 +1/21+1/22+....+1/27>8/27
Mik cần gấp mn giúp mik với
Mink sẽ tik 2 cái
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{1}{20}>\frac{1}{27};\frac{1}{21}>\frac{1}{27}...;\frac{1}{26}>\frac{1}{27}\)
=> \(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{7}{27}+\frac{1}{27}=\frac{8}{27}\)(ĐPcm)
Ta có : \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)(8 số hạng)
\(>\frac{1}{27}+\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)(8 số hạng)
\(=\frac{1}{27}\times8\)
\(=\frac{8}{27}\)
\(\Rightarrow\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}>\frac{8}{27}\left(đpcm\right)\)
ta thấy : 1/21>1/33;...1/30>1/33
Vậy 1/21+..+1/30>1/33+...+1/33(10 lần 1/33)
1/3=11/33
mà 1/33+..+1/33(10 lần 1/33) =10/33
Suy ra S>1/33+..+1/33(10 lần 1/33)>1/3
Vậy S>1/3
nhớ k nha bạn
A=1/2²+1/3²+1/4²+1/5²+...+1/2022²
Dễ thấy A > 1/2.3+1/3.4+1/4.5+1/5.6+...+1/2022.2023 = B
Và A < 1/1.2+1/2.3+1/3.4.5+1/4.5+...+1/2021.2022 = C
Ta có B = 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2022 - 1/2023
B = 1/2 - 1/2023 > 1/2
C = 1- 1/2 + 1/2 - 1/3 +.... + 1/2021 - 1/2022
= 1-1/2022 < 1
Vậy 1 > C > A > B > 1/2
Hay 1 >A>1/2
Suy ra A không phải là số tự nhiên.
Bạn muốn dạy kèm hoặc giải đáp mọi thắc mắc liên quan tới toán thì có thể liên hệ nhé
Đặt \(B=\frac{1}{20}+\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}< C=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+....+\frac{1}{200}\)
Số các phân số \(\frac{1}{200}\)có trong \(B\)là :
( 200 - 21 ) :1 + 1 = 180 ( phân số )
Nên \(B=\frac{1}{20}+180.\frac{1}{200}=\frac{1}{20}+\frac{9}{10}>\frac{9}{10}\)
Do đó , \(C>B>\frac{9}{10}\)nên \(C>\frac{9}{10}\)
Vậy \(C>\frac{9}{10}\left(ĐPCM\right)\)
#)Giải :
Câu 1 :
Đặt \(A=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)
\(\Rightarrow A>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)( 8 số hạng )
\(\Rightarrow A>\frac{8}{27}=\frac{8}{27}\)
\(\Rightarrow A>\frac{8}{27}\)
#~Will~be~Pens~#
Câu 1:(trội)
Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\left(đpcm\right)\)
Câu 2:\(D=\frac{2^{25}.3^{15}+3^{15}.5.2^{26}}{2^{25}.3^{17}+3^{15}.2^{25}}=\frac{2^{25}3^{15}\left(1+5.2\right)}{2^{25}3^{15}\left(3^2+1\right)}=\frac{11}{10}\)
Ta có:\(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}=\frac{8}{27}\)
Vậy đpcm