Cho x,y,z > 0 thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2017\)
Tìm GTNN của \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tìm đề thi hsg tỉnh thanh hóa lớp 9 năm nào đó là thấy
bài này dài,ngại làm
đặt là được
Câu hỏi của Hoàng Gia Anh Vũ - Toán lớp 9 - Học toán với OnlineMath
Đặt \(\sqrt{x^2+y^2}=c;\sqrt{y^2+z^2}=a;\sqrt{z^2+x^2}=b\)
Ta có:
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(z^2+x^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{c^2+b^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}+\frac{b^2+a^2-c^2}{c}\right)\)
\(\ge\frac{1}{2\sqrt{2}}\left(\frac{\left(2a+2b+2c\right)^2}{2\left(a+b+c\right)}-2018\right)=\frac{1009}{\sqrt{2}}\)
=0,5
Vì có gtnn khi xy=yz=zx=1:9 => x=y=z=1:3
Thay số và tính được gtnn là A=0.5
Áp dung BĐT co- si, ta có:
\(y+z\le\sqrt{2\left(y^2+z^2\right)}\)
D đó: \(\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
tương tự: \(\frac{y^2}{z+x}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}},\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
\(\Rightarrow T\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
Đặt : \(\sqrt{x^2+y^2}=a;\sqrt{y^2+z^2}=b;\sqrt{x^2+z^2}=c\left(a,b,c>0\right)\)
Khi đó: \(T\ge\frac{1}{2\sqrt{2}}\left(\frac{a^2+c^2-b^2}{b}+\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}\right)\)
\(\Leftrightarrow T\ge\frac{1}{2\sqrt{2}}\left(\left(\frac{\left(a+c\right)^2}{2b}-b\right)+\left(\frac{\left(a+b\right)^2}{2c}-c\right)+\left(\frac{\left(b+c\right)^2}{2a}-a\right)\right)\)
\(\ge\frac{1}{2\sqrt{2}}\left(2\left(a+c\right)-3b+2\left(a+b\right)-3c+2\left(b+c\right)-3a\right)\)
\(\Rightarrow T\ge\frac{1}{2\sqrt{2}}\left(a+b+c\right)=\frac{1}{2}\sqrt{\frac{2017}{2}}\)
Xét bất đẳng thức : \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
Áp dụng ta có :
\(2\left(y^2+z^2\right)\ge\left(y+z\right)^2\)
\(\Leftrightarrow\sqrt{2\left(y^2+z^2\right)}\ge y+z\)
\(\Leftrightarrow\frac{x^2}{y+z}\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
Tương tự ta có \(\frac{y^2}{x+z}\ge\frac{y^2}{\sqrt{2\left(x^2+z^2\right)}};\frac{z^2}{x+y}\ge\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
Cộng theo vế của 3 bđt ta được :
\(A\ge\Sigma\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x^2+y^2}\\b=\sqrt{y^2+z^2}\\c=\sqrt{z^2+x^2}\end{matrix}\right.\)
Khi đó :
+) \(a+b+c=2017\)
+) \(a^2+b^2-c^2=x^2+y^2+y^2+z^2-z^2-x^2=2y^2\)
\(\Leftrightarrow\frac{a^2+b^2-c^2}{2}=y^2\)
\(\)+) \(\sqrt{2\left(z^2+x^2\right)}=\sqrt{2}c\)
Do đó ta có \(A\ge\frac{a^2+b^2-c^2}{2\sqrt{2c}}+\frac{b^2+c^2-a^2}{2\sqrt{2}a}+\frac{a^2+c^2-b^2}{2\sqrt{2}b}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2+b^2-c^2}{c}+\frac{b^2+c^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}\right)\)
\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}-c\right)\right]\)
\(=\frac{1}{2\sqrt{2}}\left[\Sigma\left(\frac{\left(a+b\right)^2}{2c}+2c-3c\right)\right]\ge\frac{1}{2\sqrt{2}}\left[\Sigma\left(2\left(a+b\right)-3c\right)\right]\)
\(=\frac{1}{2\sqrt{2}}\left(a+b+c\right)\)
\(=\frac{1}{2\sqrt{2}}\cdot2017=\frac{2017}{2\sqrt{2}}=\frac{2017\sqrt{2}}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=...\)
ghê nhờ:) Mà viết kĩ lại giúp em chỗ:
\(=\frac{1}{2\sqrt{2}}\left(\frac{a^2+b^2-c^2}{c}+...\right)=\frac{1}{2\sqrt{2}}\left(\Sigma\left(\frac{\left(a+b\right)^2}{2c}-c\right)\right)\).
Em ko hiểu lắm, tại sao lại có dấu = ở đây được nhỉ?