Trên mp Oxy cho đ A(2,3), B(4,4), C(3,2).
a) Tìm tọa độ đ D sao cho tg ABCD là hbh
b) Viết pt các đg chéo của hbh ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{GB}=\left(4;\dfrac{28}{3}\right)\)
Gọi \(D\left(x;y\right)\) \(\Rightarrow\overrightarrow{DG}=\left(-x;-\dfrac{13}{3}-y\right)\)
Gọi O là tâm hbh \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{DG}=\dfrac{2}{3}\overrightarrow{DO}\\\overrightarrow{DO}=\overrightarrow{OB}\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{DG}=\dfrac{1}{3}\overrightarrow{DB}=\dfrac{1}{2}\overrightarrow{GB}\)
\(\Rightarrow\left\{{}\begin{matrix}-x=\dfrac{1}{2}.4\\-\dfrac{13}{3}-y=\dfrac{1}{2}.\dfrac{28}{3}\end{matrix}\right.\) \(\Rightarrow D\left(-2;-9\right)\)
bạn ơi đáp án của nó là D(-2;-9). bạn giúp mk giải vs
*) giả sử điểm D có tọa độ là \(D\left(x_D;y_D\right)\)
\(\Rightarrow\overrightarrow{DC}\left(1-x_D;-1-y_D\right)\) và \(\overrightarrow{AB}\left(-5;-1\right)\)
ta có : ABCD là hình bình hành khi và chỉ khi \(\overrightarrow{DC}=\overrightarrow{AB}\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x_D=-5\\-1-y_D=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_D=6\\y_D=0\end{matrix}\right.\)
vậy điểm D sao cho tứ giác ABCD là hình bình hành có tọa độ là \(D\left(6;0\right)\)
*) ý tiếp theo mình bó tay
ta có : tứ giác ABCD là hình bình hành \(\Rightarrow\) không thể nào ABCD thẳng hàng