Tìm GTNN của biểu thức sau:
A = \(\dfrac{1}{2}\) . (x - 3)\(^2\) + 10
mọi người ơi giúp mik với ai làm đc mik tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)
⇔\(\left(x+4\right)\left(x+4\right)=100\)
⇔\(\left(x+4\right)^2=10^2\)
⇔\(\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)
\(c,ĐK:x\ne-4\\ PT\Leftrightarrow\left(x+4\right)^2=100\\ \Leftrightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\x=-14\left(tm\right)\end{matrix}\right.\\ d,ĐK:x\ne-2;x\ne-3\\ PT\Leftrightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\\ \Leftrightarrow x^2+2x-3=x^2-4\\ \Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\left(tm\right)\)
a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
⇔\(7\left(x-3\right)=5\left(x+5\right)\)
⇔\(7x-21=5x+25\)
⇔\(7x-21-5x-25=0\)
⇔\(2x-46=0\)
⇔\(2x=46\)
⇔\(x=23\)
Do \(\left|x\right|,\left|x^2+x\right|\ge0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x^2+x=0\end{matrix}\right.\)
\(\Rightarrow x=0\)
a) Áp dụng t/c dtsbn:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
b) \(\dfrac{3}{x}=\dfrac{7}{y}\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Và \(x+16=y\Rightarrow y-x=16\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{y-x}{7-3}=\dfrac{16}{4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)
\(M=1-2+2^2-2^3+2^4-2^5+...+2^{98}-2^{99}\)
\(=1-\left(2-2^2\right)-\left(2^3-2^4\right)-...-\left(2^{98}-2^{99}\right)\)
\(=1-2\left(1-2\right)-2^2\left(1-2\right)-...-2^{98}\left(1-2\right)\)
\(=1+2+2^2+...+2^{98}\)
\(2M=2+2^2+2^3+...+2^{99}\)
\(2M-M=\left(2+2^2+2^3+...+2^{99}\right)-\left(1+2+2^2+...+2^{98}\right)\)
\(M=2^{99}-1\)
\(x:y:z=3:5:\left(-2\right)\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{-2}=\dfrac{5x}{15}=\dfrac{3z}{-6}=\dfrac{5x-y+3z}{15-5-6}=-\dfrac{16}{4}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-4\right).3=-12\\y=\left(-4\right).5=-20\\z=\left(-4\right).\left(-2\right)=8\end{matrix}\right.\)
Ta có: 4x = 7y
<=> \(\dfrac{4}{y}=\dfrac{7}{x}\)
<=> \(\dfrac{16}{y^2}=\dfrac{49}{x^2}\)
=> \(\dfrac{16+49}{x^2+y^2}=\dfrac{65}{260}=\dfrac{1}{4}\)
=> \(\left\{{}\begin{matrix}x=28\\y=16\end{matrix}\right.\)
Đoạn biến đổi từ \(\dfrac{16}{y^2}=\dfrac{49}{x^2}\) sang \(\dfrac{16+49}{x^2+y^2}\) bạn nên xài dấu = thì hợp lý hơn, vì như vậy bạn mới có \(\dfrac{16}{y^2}=\dfrac{49}{x^2}=\dfrac{1}{4}\) để tìm ra x, y
c) \(2x=3y=5z\)⇒\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng tính chát dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
⇒\(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)
\(A=\dfrac{1}{2}\left(x-3\right)^2+10\ge10\\ A_{min}=10\Leftrightarrow x-3=0\Leftrightarrow x=3\)
\(A=\dfrac{1}{2}\left(x-3\right)^2+10\ge10\forall x\)
Dấu '=' xảy ra khi x=3