K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

a) Ta có: A = \(\frac{n+9}{n-4}=\frac{\left(n-4\right)+13}{n-4}=1+\frac{13}{n-4}\)

Để A \(\in\)Z <=> 13 \(\in\)n - 4 <=> n - 4 \(\in\)Ư(13) = {1; -1; 13; -13}

Với : +) n  - 4 = 1 => n = 1 + 4 = 5

        +) n - 4 = -1 => n = -1 + 4 = 3

    +) n - 4 = 13 => n = 13 + 4 = 17 

    +) n - 4 = -13 => n=  -13 + 4 = -9

Vậy ...

b) Ta có: B = \(\frac{3n+5}{n-1}=\frac{3\left(n-1\right)+8}{n-1}=3+\frac{8}{n-1}\)

Để B \(\in\)Z <=> 8 \(⋮\)n - 1 <=> n - 1 \(\in\)Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

n - 1 1 -1 2 -2 4 -4 8-8
  n 2 0 3 -1 5 -3 9 -7

Vậy ...

31 tháng 3 2023

Ai có lời giải k ạ

23 tháng 9 2015

A=\(\frac{3n+9}{n-4}\)=\(\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}\)
Vì n-4 : hết cho n-4 => 3(n-4) chia hết cho n-4=> để A nguyên => 21 chia hết cho n-4
n-4 thuộc Ư(21)=> n-4 thuộc {-21;-7;-3;-1;1;3;7;21} =>n thuộc {-17;-3;1;3;5;7;25} 

21 tháng 3 2016

tsfđgggggggggg

Câu 1:

a) \(\dfrac{n-5}{n-3}\) 

Để \(\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\) 

\(n-5⋮n-3\) 

\(\Rightarrow n-3-2⋮n-3\) 

\(\Rightarrow2⋮n-3\) 

\(\Rightarrow n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\) 

Ta có bảng giá trị:

n-1-2-112
n-1023

Vậy \(n\in\left\{-1;0;2;3\right\}\) 

b) \(\dfrac{2n+1}{n+1}\) 

Để \(\dfrac{2n+1}{n+1}\) là số nguyên thì \(2n+1⋮n+1\)  

\(2n+1⋮n+1\) 

\(\Rightarrow2n+2-1⋮n+1\) 

\(\Rightarrow1⋮n+1\) 

\(\Rightarrow n-1\inƯ\left(1\right)=\left\{\pm1\right\}\) 

Ta có bảng giá trị:

n-1-11
n02

Vậy \(n\in\left\{0;2\right\}\) 

Câu 2:

a) \(\dfrac{n+7}{n+6}\) 

Gọi \(ƯCLN\left(n+7;n+6\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+6⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(n+7\right)-\left(n+6\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{n+7}{n+6}\) là p/s tối giản

b) \(\dfrac{3n+2}{n+1}\) 

Gọi \(ƯCLN\left(3n+2;n+1\right)=d\) 

\(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)    \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3.\left(n+1\right)⋮d\end{matrix}\right.\)   \(\Rightarrow\left[{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\) 

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\) 

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\) 

Vậy \(\dfrac{3n+2}{n+1}\) là p/s tối giản

23 tháng 8 2021

cứu mik vớiiiiiiiiii

23 tháng 8 2021

a. ĐK : \(n\ne-4\) 

\(A=\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=1-\frac{3}{n+4}\)

\(\Rightarrow n+4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n + 41-13-3
n-3-5-1-7

b, ĐK : \(n\ne-1\)

 \(B=\frac{3n-1}{n+1}=\frac{3\left(n+1\right)-4}{n+1}=3-\frac{4}{n+1}\)

\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n + 11-12-24-4
n0-21-33-5

c,ĐK : \(n\ne\frac{1}{2}\) 

\(C=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

2n - 11-12-24-48-8
n103/2(loại)-1/2(loại)5/2(loại)-3/2(loại)9/2(loại)-7/2(loại)
23 tháng 6 2016

Toán lớp 7

23 tháng 6 2016

Toán lớp 7

vậy để B nguyên thì n\(\in\) {-17;-3;1;3;5;7;11;25}

3 tháng 5 2016

sao ma kho 

27 tháng 1 2022

20 tháng 7 2019

a) Để \(A\inℤ\)

\(\Rightarrow3⋮n-5\)

\(\Rightarrow n-5\inƯ\left(3\right)\)

\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)

Lập bảng xét các trường hợp : 

\(n-1\)\(1\)\(3\)\(-1\)\(-3\)
\(n\)\(2\)\(4\)\(0\)\(-2\)

Vậy \(n\in\left\{2;4;0\right\}\)

b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)

\(\Rightarrow n-6+15⋮n-6\)

Vì \(n-6⋮n-6\)

\(\Rightarrow15⋮n-6\)

\(\Rightarrow n-6\inƯ\left(15\right)\)

\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)

Lập bảng xét các trường hợp ta có: 

\(n-6\)\(1\)\(-1\)\(3\)\(-3\)\(5\)\(-5\)\(15\)\(-15\)
\(n\)\(7\)\(5\)\(9\)\(3\)\(11\)\(1\)\(21\)\(-9\)

Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)

a)Để A có giá trị nguyên thì 3n+4 chia hết cho n-1

=>3(n-1)+7 chia hết cho n-1

=> n-1 thuộc Ư(7)={1;7;-1;-7}

Phần cuối bn tự làm nha

Còn câu b làm tương tự

8 tháng 3 2020

a) Từ đề bài, ta có:

\(A=\frac{3n+4}{n-1}=\frac{3\left(n-1\right)+7}{n-1}=3+\frac{7}{n-1}\)

\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)\)

\(\Rightarrow\left(n-1\right)\in\left\{\pm1;\pm7\right\}\)

\(\Rightarrow n\in\left\{2;0;-6;8\right\}\)

b) \(\frac{6n-3}{3n+1}=\frac{2\left(3n+1\right)+5}{3n+1}=2+\frac{5}{3n+1}\)

\(\Rightarrow\left(3n+1\right)\inƯ\left(5\right)\)

\(\Rightarrow\left(3n+1\right)\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{\frac{-2}{3};0;-2;\frac{4}{3}\right\}\)