K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{O_2}=\widehat{O_4}=\dfrac{180^0+30^0}{2}=105^0\)

=>\(\widehat{O_1}=\widehat{O_3}=75^0\)

b: \(\widehat{O_2}=\widehat{O_4}=180^0\cdot\dfrac{3}{5}=108^0\)

\(\Leftrightarrow\widehat{O_1}=\widehat{O_3}=72^0\)

8 tháng 6 2017

a. n/2 goc trong hinh ve

b. n/4 cap goc đoi đinh

8 tháng 6 2017

Theo tính toán của mình thì kết quả là 343 000 hình

a:Xét ΔABD có AB=AD

nên ΔABD cân tại A

=>\(\widehat{ABD}=\widehat{ADB}\)

mà \(\widehat{ABD}=\widehat{BDC}\)

nên \(\widehat{ADB}=\widehat{BDC}\)

mà \(\widehat{BCD}=\widehat{ADC}=\widehat{ADB}+\widehat{BDC}\)

nên \(\widehat{BCD}=2\cdot\widehat{BDC}\)

=>\(\widehat{BCD}=\dfrac{2}{3}\cdot90^0=60^0\)

=>\(\widehat{ADC}=60^0\)

=>\(\widehat{BAD}=\widehat{ABC}=120^0\)

b: Gọi M là trung điểm của CD

Xét ΔACD và ΔBDC có 

AC=BD

CD chung

AD=BC

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{CAD}=\widehat{DBC}=90^0\)

Ta có: ΔDBC vuông tại B

mà BM là đường trung tuyến

nên BM=MC

=>ΔBMC cân tại M

mà \(\widehat{MCB}=60^0\)

nên ΔBMC đều

=>BC=MC

Ta có: ΔADC vuông tại A

mà AM là đường trung tuyến

nên MA=MD

=>ΔMAD cân tại M

mà \(\widehat{ADM}=60^0\)

nên ΔMAD đều

=>AD=DM

DM+MC=DC

nên DC=AD+BC=2AB(đpcm)

15 tháng 3 2017

mk 0 bt nhng ai chat nhìu kt bn với mk nha

22 tháng 8 2015

Góc b ở đâu??? Hình vẽ ở đâu???

22 tháng 8 2015

bạn vẽ hình ra rồi suy nghĩ thử đi!