K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

Hình bạn tự vẽ nha!

Bài 3:

a) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại \(A.\)

=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân)

b) Vì \(BM=CN\left(gt\right).\)

=> \(BM+BC=BC+CN\)

=> \(MC=BN.\)

Xét 2 \(\Delta\) \(ABN\)\(ACM\) có:

\(AB=AC\left(gt\right)\)

\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)

\(BN=CM\left(cmt\right)\)

=> \(\Delta ABN=\Delta ACM\) (c . g . c)

=> \(AN=AM\) (2 cạnh tương ứng).

c) Theo câu b) ta có \(AN=AM.\)

=> \(\Delta AMN\) cân tại \(A.\)

=> \(\widehat{M}=\widehat{N}\) (tính chất tam giác cân).

Xét 2 \(\Delta\) vuông \(EBM\)\(FCN\) có:

\(\widehat{MEB}=\widehat{CFN}=90^0\left(gt\right)\)

\(\widehat{M}=\widehat{N}\left(cmt\right)\)

\(BM=CN\left(gt\right)\)

=> \(\Delta EBM=\Delta FCN\) (cạnh huyền - góc nhọn)

=> \(BE=CF\) (2 cạnh tương ứng).

=> \(ME=NF\) (2 cạnh tương ứng).

d) Đề là chứng minh \(AE=AF.\)

Ta có: \(\left\{{}\begin{matrix}AM=AN\left(cmt\right)\\ME=NF\left(cmt\right)\end{matrix}\right.\)

=> \(AM-ME=AN-NF.\)

=> \(AE=AF\left(đpcm\right).\)

Mình chỉ nghĩ thêm câu d) thôi nhé.

Chúc bạn học tốt!

Bài 1 :

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{z}=\frac{x+y+z}{y+z+x}=1\) ( Do \(x+y+z\ne0\) )

\(\Rightarrow x=y=z\)

Thay \(y\)\(z\) bởi \(x\) ta được :

\(\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)

Vậy : \(\frac{x^{3333}.z^{6666}}{y^{9999}}=1\)

4 tháng 10 2019

Tự vẽ hình

Vì EG song song với Ox

     Oy vuông góc với EG

=>^EGF=90o

1 tháng 11 2018

áp dụng t/c dãy ti số bằng nhau ta có:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\frac{x}{y}=1\Rightarrow x=y,\frac{y}{z}=1\Rightarrow y=z,\frac{z}{x}=1\Rightarrow z=x\left(1\right)\)

từ (1) => x=y=z

\(\frac{x^{3333}.y^{6666}}{z^{9999}}=\frac{z^{3333}.z^{6666}}{z^{9999}}=\frac{z^{9999}}{z^{9999}}=1\)

2 tháng 11 2018

Theo tính chất dãy tỉ số bằng nhau: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\Rightarrow x=y=z\)

Thay y và z bởi x (do x = y = z),ta được: \(\frac{x^{3333}.y^{6666}}{z^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)

2 tháng 12 2019

Chiều mai mình nộp ạ

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
23 tháng 7 2017

Từ \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) Áp dụng TC DTSBN ta có :

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\Rightarrow x=y\\\frac{y}{z}=1\Rightarrow y=z\\\frac{z}{x}=1\Rightarrow z=x\end{cases}}\) \(\Rightarrow x=y=z\)

\(\Rightarrow A=\frac{x^{3333}.z^{6666}}{y^{9999}}=\frac{x^{3333}.x^{6666}}{x^{9999}}=\frac{x^{9999}}{x^{9999}}=1\)

21 tháng 9 2017

cảm ơn bạn nhiều

10 tháng 10 2019

Vì x,y,z khác 0 nên ta áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}}\Leftrightarrow x=y=z\)

Đặt \(x=y=z=a\)

\(A=\frac{2013a^2+a^2+a^2}{a^2+2013a^2+a^2}=\frac{2015a^2}{2015a^2}=1\)

x=by+cz;y=ax+cz;z=ax+by

=>x+y+z=2(ax+by+cz)

\(\Leftrightarrow\frac{x+y+z}{2}=ax+by+cz\)

\(\Leftrightarrow y+z=\frac{x+y+z}{2}+ax;z+x=\frac{x+y+z}{2}+by;x+y=\frac{x+y+z}{2}+cz\)

\(\Leftrightarrow\frac{y+z-x}{2}=ax;\frac{z+x-y}{2}=by;\frac{x+y-z}{2}=cz\)

\(\Leftrightarrow\frac{y+z-x}{2x}=a;\frac{z+x-y}{2y}=b;\frac{x+y-z}{2z}=c\)

\(\Rightarrow A=\frac{1}{1+\frac{x+y-z}{2z}}+\frac{1}{1+\frac{y+z-x}{2x}}+\frac{1}{1+\frac{z+x-y}{2y}}=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)

\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

thiếu đề