Tìm GTLN của biểu thức :
\(\text{A}=\frac{5}{\left(2x-1\right)^2+3}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
a) Ta có: ( 2x - 1 ) mũ 2 lớn hơn hoặc bằng 0 với mọi x.
=> 3 . ( 2x - 1 ) lớn hơn hoặc bằng 0 với mọi x
=> 5 - 3 . ( 2x - 1 ) nhỏ hơn hoặc bằng 5 với mọi x
Vậy maxA = 5
b) Ta có: ( x - 1 ) mũ 2 lớn hơn hoặc bằng 0
=> 2 . ( x - 1 ) mũ 2 lớn hơn hoặc bằng 0
=> 2 . ( x - 1 ) mũ 2 . 3 lớn hơn hoặc bằng 0
mà ko có phép chia cho 0 nên 2 . ( x - 1 ) . 3 lớn hơn hoặc bằng 1
=> B nhỏ hơn hoặc bằng 1
Vậy maxB = 1
\(\left(2x-1\right)^2+3\ge3\Rightarrow A=\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)
\(\text{Dấu = xảy ra khi }2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(\text{Vậy Max}A=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)
Ta có : \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow(2x-1)^2+3\ge3\)
\(\Rightarrow\frac{1}{\left(2x-1\right)^2+3}\le\frac{1}{3}\)
\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\)
\(\Rightarrow\text{A}_{max}=\frac{5}{3}\).
Dấu "=" xảy ra khi : \(2x-1=0\Leftrightarrow x=\frac{1}{2}\).
Vậy \(\text{A}_{max}=\frac{5}{3}\) khi \(x=\frac{1}{2}\).