K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2019

Câu 1:

Gọi \(\left(3n+2;2n+1\right)=d\)

\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow\frac{3n+2}{2n+1}\)là phân số tối giản.

8 tháng 8 2019

Bìa 2:

a) \(2xy-5x+2y=148\)

\(\Leftrightarrow x\left(2y-5\right)+2y-5=143\)

\(\Leftrightarrow\left(2y-5\right)\left(x+1\right)=143\)

LÀM NỐT

Câu 1 : (2 điểm) Cho biểu thức           a, Rút gọn biểu thức          b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.Câu 2: (1 điểm)      Tìm tất cả các số tự nhiên có 3 chữ số  sao cho  và Câu 3: (2 điểm)          a. Tìm n để n2 + 2006 là một số chính phương     b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.Câu 4:...
Đọc tiếp

Câu 1 : (2 điểm) Cho biểu thức

          a, Rút gọn biểu thức

          b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

Câu 2: (1 điểm)

      Tìm tất cả các số tự nhiên có 3 chữ số  sao cho  và

Câu 3: (2 điểm)

          a. Tìm n để n2 + 2006 là một số chính phương

     b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.

Câu 4: (2 điểm)

          a. Cho a, b, n Î N* Hãy so sánh

     b. Cho  A = ;      B =  . So sánh A và B.

Câu 5: (2 điểm)

       Cho 10 số tự nhiên bất kỳ :     a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số  hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Câu 6: (1 điểm)

      Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.

 

1

Câu 6:

Số giao điểm là:

\(\dfrac{2006\cdot2005}{2}=2011015\left(điểm\right)\)

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

Giải:

b) \(\left(2x+1\right).\left(y-3\right)=10\)

\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)  

Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)

Ta có bảng giá trị: 

2x+115
y-351
x12
y84

Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\) 
c) \(2xy-x+2y=13\) 

\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\) 

\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\) 

\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\) 
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\) 

Ta có bảng giá trị:

x+1124
2y-113
x113
y12

Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\) 

Giải: (tiếp)

d) \(6xy-9x-4y+5=0\) 

\(\Rightarrow3x.\left(2y-3\right)-4y=-5\) 

\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\) 

\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)

\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\) 

\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\) 

Ta có bảng giá trị:

3x-21
2y-31
x1
y2

Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\) 

e) \(2xy-6x+y=13\)

\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\) 

\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\) 

Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!

f) \(2xy-5x+2y=148\) 

\(\Rightarrow2y.\left(x+1\right)-5x-5=143\) 

\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\) 

\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\) 

\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\) 

Ta có bảng giá trị:

x+111113143
2y-514313111
x01012142
y74983

Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\) 

Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! khocroi)

a: Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow6n+4-6n-3⋮d\)

=>d=1

=>Phân số tối giản

b: Gọi d=UCLN(3n+2;5n+3)

\(\Leftrightarrow15n+10-15n-9⋮d\)

=>d=1

=>Phân số tối giản

a: Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow6n+4-6n-3⋮d\)

=>d=1

=>Phân số tối giản

b: Gọi d=UCLN(3n+2;5n+3)

\(\Leftrightarrow15n+10-15n-9⋮d\)

=>d=1

=>Phân số tối giản

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm