K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

Đặt \(A=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

\(A=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{4}.\sqrt{12}}}}\)

\(A=\sqrt{6+2\sqrt{5-\sqrt{12+2\sqrt{12}+1}}}\)

\(A=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)

\(A=\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)

\(A=\sqrt{6+2\sqrt{4-\sqrt{12}}}\)

\(A=\sqrt{6+2\sqrt{4-\sqrt{4}.\sqrt{3}}}\)

\(A=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)

\(A=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(A=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(A=\sqrt{6+2\sqrt{3}-2}\)

\(A=\sqrt{4+2\sqrt{3}}\)

\(A=\sqrt{3+2\sqrt{3}+1}\)

\(A=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(A=1+\sqrt{3}\) (đpcm)

Vậy \(A=1+\sqrt{3}\)

18 tháng 9 2016

Xét tử \(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)

\(=2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}=2\sqrt{3+\sqrt{5-\left(2\sqrt{3}+1\right)}}\)

\(=2\sqrt{3+\sqrt{4-2\sqrt{3}}}=2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}=2\sqrt{3+\sqrt{3}-1}\)

\(=2\sqrt{2+\sqrt{3}}=\frac{2\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\frac{2\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\frac{2\left(\sqrt{3}+1\right)}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

Suy ra VT = VP = 1

25 tháng 6 2017

Đáp án là : VT = VP = 1

vhuv bn hoc gioi tk mk nha

8 tháng 10 2017

a) \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=\sqrt[4]{25+2\sqrt{600}+24}+\sqrt[4]{25-2\sqrt{600}+24}\\ =\sqrt[4]{\left(\sqrt{25}+\sqrt{24}\right)^2}+\sqrt[4]{\left(\sqrt{25}-\sqrt{24}\right)^2}=\sqrt{\sqrt{25}+\sqrt{24}}+\sqrt{\sqrt{25}-\sqrt{24}}\\ =\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =2\sqrt{3}\)

Ta có :

A= \(\dfrac{2\cdot\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

Đặt B=\(2\cdot\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

Ta có B=\(2\cdot\sqrt{3+\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}}\)

\(2\cdot\sqrt{3+\sqrt{5-\sqrt{12}-1}}\\ =2\sqrt{3+\sqrt{4-\sqrt{12}}}\\ =2\cdot\sqrt{3+\sqrt{3-2\cdot\sqrt{3}+1}}\\ =2\cdot\sqrt{3+\sqrt{3}-1}\\ =2\cdot\sqrt{2+\sqrt{3}}\)

Thay B vào A, ta cũng có:

A=\(\dfrac{2\cdot\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\\ =\dfrac{2\cdot\sqrt{2+\sqrt{3}}}{\sqrt{2\cdot\left(\sqrt{3}+1\right)}}\\ =\dfrac{\sqrt{2}\cdot\sqrt{2+\sqrt{3}}}{\sqrt{3}+1}\\ =\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}=\dfrac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}=1\)

Vậy A thuộc Z

6 tháng 8 2015

Biến đổi vế trái ta có:

\(\sqrt{3+\sqrt{5}-\sqrt{13+4\sqrt{3}}}=\sqrt{3+\sqrt{5}-\sqrt{\left(2\sqrt{3}+1\right)^2}}=\sqrt{3+\sqrt{5}-2\sqrt{3}-1}=\sqrt{2+\sqrt{5}-2\sqrt{3}}\)

Đề sai 

26 tháng 7 2020

Trả lời:

\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+4\sqrt{3}+1}}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{5-2\sqrt{3}-1}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)

\(A=\frac{\sqrt{2}.\sqrt{2}.\sqrt{2+\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)

\(A=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)

\(A=\frac{\sqrt{2}.\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)

\(A=\frac{\sqrt{2}.\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)

\(A=\frac{\sqrt{2}.\left(\sqrt{3}+1\right)}{\sqrt{2}.\left(\sqrt{3}+1\right)}\)

\(A=1\)

12 tháng 7 2021

\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)

\(=\sqrt{12}+1=2\sqrt{3}+1\)

\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)

\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

2) biến đổi khúc sau như câu 1:

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

 

12 tháng 7 2021

1) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+\sqrt{4.12}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}\)

\(=\sqrt{5-\sqrt{\left(\sqrt{12}\right)^2+2.\sqrt{12}+1^2}}=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left|\sqrt{4.3}+1\right|}\)

\(=\sqrt{5-\left(2\sqrt{3}+1\right)}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)

\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)

\(=2\sqrt{\dfrac{4+2\sqrt{3}}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}\)

\(=2.\dfrac{\left|\sqrt{3}+1\right|}{\sqrt{2}}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)

2) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{3}-1\) (như trên)

\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\) 

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)