Biết \(\overline{2a3bc4d5}\) là số tự nhiên có \(8\) chữ số. Tìm\(x\) khi:
\(20112011x=\overline{2a3bc4d5}\times2\times402.2\times2.5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Vì số cần tìm nhỏ nhất nên ta lần lượt thử chọn với các giá trị số nhỏ nhất.
- Giả sử số tự nhiên có dạng 11111a
=> 111110 + a chia hết cho 1987. Vì 111110 chia 1987 dư 1825
=> a chia 1987 dư 162 ( vô lí - 162 > a).
- Giả sử số tự nhiên có dạng 11111ab
=> 1111100 + ab chia hết cho 1987. Vì 1111100 chia 1987 dư 367=> ab chia 1987 dư 1620 ( vô lí - 1620 > ab)
- Giả sử số tự nhiên có dạng 11111abc
=> 11111000 + abc chia hết cho 1987. Vì 11111000 chia 1987 dư 1683
=> abc chia 1987 dư 304. Mà abc nhỏ nhất
=> abc = 304
Vậy số tự nhiên là 11111304
Câu 1: 90
Câu 2: 349912
Câu 3: 24
Câu 4: 90804
Câu 5: 19
Câu 6: 450
Câu 7: 250000
Câu 8: 15
Câu 9: 11110
Câu 10: 910010
1. 90
2. 349912
3. 24
4. 90804
5. 19
6. 450
7. 250000
8. Phân tích được: 100 + 10a + b + 36 = 100a +10b + 1
Chuyển vế ta được : 90a + 9b = 135
9 ab = 135
ab = 15
9. 9876 + 1023 = 10899
10. ab4c + 176d = ef900
Ta thấy c+d=0 mà 4+6 =0 nên c+d không nhớ. suy ra c=d =0
Thay vào : ab40 +1760 = ef900
4+6 =0 nhớ 1 suy ra b=1
Thay vào : a140 + 1760 = ef900
Ta thấy a+1 + ef mà chỉ có 9+1 mới bằng 2 chữ số trong trường hợp này nên a=9
Ta thay vào được : 9140 + 1760 = 10900
Vậy abcdef = 910010
\(\overline{abcd}⋮9\) (d là số nguyên tố)
\(\Rightarrow d\in\left\{3;5;7\right\}\)
mà \(\overline{abcd}\) là số chính phương
\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)
\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)
mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)
\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)
\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)
Giải:
Ta có:
\(\overline{1abc}.2=\overline{abc8}\)
\(\Rightarrow\left(1000+\overline{abc}\right).2=10.\overline{abc}+8\)
\(\Rightarrow2000+2.\overline{abc}=10.\overline{abc}+8\)
\(\Rightarrow10.\overline{abc}-2.\overline{abc}=2000-8\)
\(\Rightarrow8.\overline{abc}=1992\)
\(\Rightarrow\overline{abc}=249\)
\(\Rightarrow a=2,b=4,c=9\)
Vậy a = 2, b = 4, c = 9
Ta có:
1abc x 2 = abc8
=> (1000 + abc) x 2 = abc0 + 8
=> 2000 + abc x 2 = abc x 10 + 8
=> 2000 - 8 = abc x 10 - abc x 2
=> 1992 = abc x 8
=> abc = 1992 : 8
=> abc = 249
Vậy a = 2; b = 4; c = 9
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
\(20112011x=\overline{2a3bc4d5}\cdot2\cdot402,2\cdot2,5\)
\(\Leftrightarrow20112011x=\overline{2a3bc4d5}\cdot2011\)
\(\Leftrightarrow10001x=\overline{2a3bc4d5}\)
\(\Leftrightarrow x=\frac{\overline{2a3bc4d5}}{10001}\Leftrightarrow x=\overline{2a3b}+\frac{\overline{c4d5}-\overline{2a3b}}{10001}\)
Vậy với \(x=\overline{2a3b}+\frac{\overline{c4d5}-\overline{2a3b}}{10001}\) thì \(20112011x=\overline{2a3bc4d5}\cdot2\cdot402,2\cdot2,5\).
Nếu đề bài bổ sung điều kiện là \(x\in Z\) thì đọc đến hết.
\(x\in Z\Leftrightarrow\overline{2a3bc4d5}⋮10001\)(vì số bị chia và số chia đều là số nguyên dương)
Mặt khác, ta có: \(10001\cdot\overline{2a3b}=\overline{2a3b2a3b}\)
Từ đó, ta có: \(\overline{2a3b}=\overline{c4d5}\left(=x\right)\)
Dễ dàng tìm thấy được \(a=4,b=5,c=2,d=3\)
Từ đó, ta có số tự nhiên là \(24352435\), và \(x=2435\) (TMĐK)
Vậy với \(x=2435\) thì \(20112011x=\overline{2a3bc4d5}\cdot2\cdot402,2\cdot2,5\).