Xác định hệ số m để đa thức g(x) = x^3-m^2x^2+mx- 27 nhận x =3 làm 1 nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = 3 vào đa thức g(x), ta được: \(g\left(x\right)=3^2+3m-3=0\)
\(\Leftrightarrow9+3m-3=0\)
\(\Leftrightarrow6+3m=0\)
\(\Leftrightarrow3m=-6\)
\(\Leftrightarrow m=-2\)
Vậy hệ số m là -2
Để đa thức \(g\left(x\right)=x^2+mx-3\) nhận \(x=3\)làm một nghiệm thì \(g\left(3\right)=0\)
\(\Leftrightarrow3^2+m.3-3=0\Leftrightarrow3m=-6\Leftrightarrow m=-2\)
Vậy : Với \(m=-2\)thì đa thức \(g\left(x\right)=x^2+mx-3\)nhận \(x=3\)làm một nghiệm.
Tham khảo nha!!! Học tốt
a) m + 2 + 8 = 0 \(\Leftrightarrow\)m = ( - 10)
b) f(x) = x2 + 3x + 2
c) 1 + ( -3) + m = 0 \(\Leftrightarrow\)m = 2
a/Thay x=1 vào =>\(m+2+8=0\Leftrightarrow m=-10\)
b/Thay x=1 vào \(\Rightarrow7-m-1=0\Rightarrow m=6\)
c/Thay x=1 vào \(\Rightarrow1-3+m=0\Rightarrow m=2\)
Câu 3:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1+a+4=4-10-b\\2-a+4=25-25-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-6-4-2=-12\\-a+b=-6\end{matrix}\right.\)
=>a=-3; b=-9