K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

với mọi số thực a thì \(3^{a^2-4};3^{4a+8}\) đều dương nên Cosi ta đc: 

\(3^{a^2-4}+3^{4a+8}\ge2\sqrt{3^{a^2+4a+4}}=2\sqrt{3^{\left(a+2\right)^2}}\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=-2\)

7 tháng 8 2019

Đặt \(2^a=x;2^b=y;2^c=z\left(x,y,z>0\right)\)

=>\(xyz=2^{a+b+c}=1\)

Khi đó ĐPCM trở thành

\(x^3+y^3+z^3\ge x+y+z\)

Cosi \(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z\)

=> \(x^3+y^3+z^3+6\ge3\left(x+y+z\right)\)

Mà \(\)\(x+y+z\ge3\sqrt[3]{xyz}=3\)

=> \(x^3+y^3+z^3\ge x+y+z\)(ĐPCM)

Dấu bằng xảy ra khi x=y=z=1=> \(a=b=c=0\)

7 tháng 8 2019

Trần Phúc Khang hình như chỗ \(x+y+z\ge3\)\(\Rightarrow\)\(x^3+y^3+z^3+6\ge3\left(x+y+z\right)\) ngược dấu đó anh 

Cần chứng minh: \(x^3+y^3+z^3\ge x+y+z\)

\(x^3+y^3+z^3\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\frac{\left(x+y+z\right)^4}{9}}{x+y+z}=\frac{\left(x+y+z\right)^3}{9}\)

Mà \(x+y+z=2^a+2^b+2^c\ge3\sqrt[3]{2^{a+b+c}}=3\)\(\Leftrightarrow\)\(\left(x+y+z\right)^2\ge9\)

\(\Leftrightarrow\)\(x+y+z\le\frac{\left(x+y+z\right)^3}{9}\le x^3+y^3+z^3\) đpcm

sai thì mn góp ý ạ 

11 tháng 9 2016

Ta có : \(a^4+b^4\ge a^3+b^3\)

\(\Leftrightarrow a^4+b^4-a^3-b^3\ge0\)

\(\Leftrightarrow\left(a^4-a^3\right)-\left(a-1\right)+\left(b^4-b^3\right)-\left(b-1\right)+a+b-2\ge0\)

\(\Leftrightarrow a^3\left(a-1\right)-\left(a-1\right)+b^3\left(b-1\right)-\left(b-1\right)+a+b-2\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left(a^2+a+1\right)+\left(b-1\right)^2\left(b^2+b+1\right)+a+b-2\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left[\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\right]+\left(b-1\right)^2\left[\left(b+\frac{1}{2}\right)^2+\frac{3}{4}\right]+a+b-2\ge0\)

(luôn đúng)

Vậy bất đẳng thức ban đầu được chứng minh

20 tháng 3 2018

a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)

\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)

b)\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)

NV
3 tháng 12 2021

\(\left(1+\dfrac{1}{n}\right)^n=C_n^0+C_n^1.\dfrac{1}{n}+C_n^2.\dfrac{1}{n^2}+...+C_n^n.\dfrac{1}{n^n}\)

\(=1+1+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}\)

\(=2+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}>2\)

Mặt khác:

\(C_n^k.\dfrac{1}{n^k}=\dfrac{n!}{k!\left(n-k\right)!.n^k}=\dfrac{\left(n-k+1\right)\left(n-k+2\right)...n}{n^k}.\dfrac{1}{k!}< \dfrac{n.n...n}{n^k}.\dfrac{1}{k!}=\dfrac{n^k}{n^k}.\dfrac{1}{k!}=\dfrac{1}{k!}\)

\(< \dfrac{1}{k\left(k-1\right)}=\dfrac{1}{k-1}-\dfrac{1}{k}\)

Do đó:

\(C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\)

\(\Rightarrow2+C_n^2.\dfrac{1}{n^2}+C_n^3.\dfrac{1}{n^3}+...+C_n^n.\dfrac{1}{n^n}< 2+1=3\) (đpcm)

9 tháng 2 2018

a2+b2+3-2a-2b-2c≥0

=> (a2-2a+1)+(b2-2b+1)+(c2-2c+1)≥0

=> (a-1)2+(b-1)2+(c-1)2≥0 ( luon dung )

9 tháng 2 2018

Cảm ơn!

12 tháng 11 2021

\(=\left(4a-3-3a+4\right)\left(4a-3+3a-4\right)\)

\(=\left(a+1\right)\cdot7\cdot\left(a-1\right)⋮7\)