Cho ba số a, b, c thỏa mãn \(a+b+c=\frac{3}{2}\). Chứng minh rằng \(a^2+b^2+c^2\ge\frac{3}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vào thống kê hỏi đáp xem nhé. Bài này chỉ cần biểu diễn dưới dạng tổng bình phương là xong.
ta có \(\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}\ge\frac{3}{4}\) (***)
do ab+bc+ca=3 nên
VT (***)=\(\frac{a^3}{b^2+ab+bc+ca}+\frac{b^3}{c^2+ab+bc+ca}+\frac{c^3}{a^2+ab+bc+ca}\)
\(=\frac{a^3}{\left(b+c\right)\left(a+b\right)}+\frac{b^3}{\left(c+a\right)\left(b+c\right)}+\frac{c^3}{\left(a+b\right)\left(c+a\right)}\)
áp dụng bđt AM-GM ta có \(\frac{a^3}{\left(b+c\right)\left(c+a\right)}+\frac{b+c}{8}+\frac{a+b}{8}\ge\frac{3a}{4}\)
\(\Rightarrow\frac{a^3}{\left(b+c\right)\left(c+a\right)}\ge\frac{5a-2b-c}{8}\left(1\right)\)
chứng minh tương tự ta cũng được
\(\hept{\begin{cases}\frac{b^3}{\left(c+a\right)\left(a+b\right)}\ge\frac{5b-2c-a}{8}\left(2\right)\\\frac{c^3}{\left(a+b\right)\left(c+a\right)}\ge\frac{5c-2a-b}{8}\left(3\right)\end{cases}}\)
cộng theo vế với vế của (1),(2) và (3) ta được VT (***) \(\ge\frac{a+b+c}{4}\)
mặt khác ta dễ dàng chứng minh được \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\)
đẳng thức xảy ra khi a=b=c=1 (đpcm)
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự : \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\) ; \(\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)
Cộng theo vế : \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{2}.\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
\(abc=1\Rightarrow\left(abc\right)^2=a^2b^2c^2=1\Rightarrow a^2=\frac{1}{b^2c^2}\Rightarrow\frac{1}{a^3\left(b+c\right)}=\frac{b^2c^2}{a\left(b+c\right)}=\frac{\left(bc\right)^2}{ab+ac}\)
Chứng minh tương tự ta có: \(\frac{1}{b^3\left(c+a\right)}=\frac{\left(ca\right)^2}{bc+ba};\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{ca+cb}\)
=> \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel: \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{\left(ab+bc+ca\right)^2}{bc+ca+ab+ca+ab+bc}=\frac{ab+bc+ca}{2}\)
Tiếp tục áp dụng bđt Cauchy với 3 số dương ta được: \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3\sqrt[3]{1}}{2}=\frac{3}{2}\)
=> \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{ab+bc+ca}{2}\ge\frac{3}{2}\)
Câu hỏi của Mashiro Rima - Toán lớp 8 - Học toán với OnlineMath
Áp dụng BĐT AM-GM: \(1+b^2\ge2b\)
\(\Rightarrow\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng vế với vế 3 BĐT trên ta được: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\left(a+b+c\right)-\frac{ab+bc+ca}{2}=3-\frac{ab+bc+ca}{2}\)
Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Nên \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{\left(a+b+c\right)^2}{6}=3-\frac{9}{6}=\frac{3}{2}\)(đpcm).
Dấu "=" xảy ra <=> a=b=c=1.
áp dụng bất đẳng thức buinhia
\(\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\)
\(\Leftrightarrow\left(\frac{3}{2}\right)^2\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{3}{4}\le a^2+b^2+c^2\)
Ta có : \(\left(a^2-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2-a+\frac{1}{4}\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)
Tương tự : \(b^2+\frac{1}{4}\ge b\) và \(c^2+\frac{1}{4}\ge c\)
Cộng vế theo vế ta được : \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}\ge\frac{3}{2}\Rightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Áp dụng BĐT AM-GM ta có: \(\frac{a}{b^3+ab}=\frac{1}{b}-\frac{b}{a+b^2}\ge\frac{1}{b}-\frac{b}{2\sqrt{ab^2}}=\frac{1}{b}-\frac{1}{2\sqrt{a}}\ge\frac{1}{b}-\frac{1}{4}\left(\frac{1}{a}+1\right)\)
Tương tự có: \(\hept{\begin{cases}\frac{b}{c^3+ca}\ge\frac{1}{c}-\frac{1}{4}\left(\frac{1}{b}+1\right)\\\frac{c}{a^3+ca}\ge\frac{1}{a}-\frac{1}{4}\left(\frac{1}{c}+1\right)\end{cases}}\)
Cộng 3 vế BĐT ta được: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)
Bài toán quy về chứng minh \(\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\Leftrightarrow\left(\frac{1}{a}+a\right)\left(\frac{1}{b}+b\right)\left(\frac{1}{c}+c\right)\ge3+a+b+c=6\)
BĐT cuối hiển nhiên đúng vì theo BĐT AM-GM ta có:
\(\hept{\begin{cases}\frac{1}{a}+a\ge2\\\frac{1}{b}+b\ge2\\\frac{1}{c}+c\ge2\end{cases}}\)
Dấu "=" xảy ra <=> a=b=c=1
\(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ac}\)
\(=\frac{a}{b\left(b^2+a\right)}+\frac{b}{c\left(c^2+b\right)}+\frac{c}{a\left(a^2+c\right)}\)
\(=\frac{1}{b}-\frac{b}{b^2+a}+\frac{1}{c}-\frac{c}{c^2+b}+\frac{1}{a}-\frac{a}{a^2+c}\)
\(\ge\frac{1}{b}-\frac{b}{2b\sqrt{a}}+\frac{1}{c}-\frac{c}{2c\sqrt{b}}+\frac{1}{a}-\frac{a}{2a\sqrt{c}}\)
\(=\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{4}\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\frac{1}{4}\left(\frac{1}{b}-\frac{2}{\sqrt{b}}+1\right)+\frac{1}{4}\left(\frac{1}{c}-\frac{1}{\sqrt{c}}+1\right)\)\(-\frac{3}{4}\)
\(\ge\frac{3}{4}.\frac{9}{a+b+c}+\frac{1}{4}\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{1}{4}\left(\frac{1}{\sqrt{b}}-1\right)^2+\frac{1}{4}\left(\frac{1}{\sqrt{b}}-1\right)^2-\frac{3}{4}\)
\(\ge\frac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1.
Áp dụng bất đẳng thức Bunhiacopxki :
\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(\frac{3}{2}\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)
tặng a 1GP